SUPPLIER'S CORNER

This section provides a list of all of the parts and materials that we purchase for the MacGregor 26. The items are arranged by commodity.

Click on any of the following commodities for a complete list of items that we purchase within that commodity group.

Suppliers are invited to make bids on any of the items within their capabilities.

You may be able to make items to our specifications, or you may have standard items that will perform the same function as the parts that we buy.

Please have a look. We are always open to new ideas and capable suppliers.
<table>
<thead>
<tr>
<th>HOW TO SAIL</th>
<th>MOLD MISC</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHY THE LOW PRICE</td>
<td>PAINT</td>
</tr>
<tr>
<td>COST TO OWN</td>
<td>PAPER</td>
</tr>
<tr>
<td>COMPARE 26X</td>
<td>PLASTIC EXTRUSION</td>
</tr>
<tr>
<td>COMPARE HUNTER EDGE</td>
<td>PLASTIC SHEET</td>
</tr>
<tr>
<td>COMPANY HISTORY</td>
<td>PLUMBING</td>
</tr>
<tr>
<td>HALL OF FAME AWARD</td>
<td>PLYWOOD</td>
</tr>
<tr>
<td>WHY BUY A SAILBOAT</td>
<td>PRINT</td>
</tr>
<tr>
<td>MAGAZINE REVIEWS</td>
<td>RESIN</td>
</tr>
<tr>
<td>SUPPLIERS' CORNER</td>
<td>RIGGING</td>
</tr>
<tr>
<td>SHIPPING</td>
<td>ROPE</td>
</tr>
<tr>
<td>EXPORTING</td>
<td>SAILS</td>
</tr>
<tr>
<td>FACTORY GARAGE SALE</td>
<td>SEALANT</td>
</tr>
<tr>
<td>MACGREGOR 65</td>
<td>SERVICE</td>
</tr>
<tr>
<td>MACGREGOR 70 ANTHEM</td>
<td>SEWING</td>
</tr>
<tr>
<td>MACGREGOR 70 ANTHEM</td>
<td>STEEL</td>
</tr>
<tr>
<td>MACGREGOR 70 ANTHEM</td>
<td>STEERING</td>
</tr>
<tr>
<td>MACGREGOR 70 ANTHEM</td>
<td>TAPE</td>
</tr>
<tr>
<td>MACGREGOR 70 ANTHEM</td>
<td>TRAILER</td>
</tr>
<tr>
<td>MACGREGOR 70 ANTHEM</td>
<td>TRAILER BRAKES</td>
</tr>
<tr>
<td>MACGREGOR 70 ANTHEM</td>
<td>TRAILER CUSTOM</td>
</tr>
<tr>
<td>MACGREGOR 70 ANTHEM</td>
<td>TRAILER ELECTRICAL</td>
</tr>
<tr>
<td>MACGREGOR 70 ANTHEM</td>
<td>TRAILER PARTS STANDARD</td>
</tr>
<tr>
<td>MACGREGOR 70 ANTHEM</td>
<td>TRAILER RUNNING GEAR</td>
</tr>
<tr>
<td>MACGREGOR 70 ANTHEM</td>
<td>VIDEO</td>
</tr>
<tr>
<td>MACGREGOR 70 ANTHEM</td>
<td>WELDING</td>
</tr>
<tr>
<td>MACGREGOR 70 ANTHEM</td>
<td>WIRE</td>
</tr>
<tr>
<td>MACGREGOR 70 ANTHEM</td>
<td>WOOD</td>
</tr>
</tbody>
</table>

Factory website $22,900 Trailerable sailboat. 24 mph. the WORLD'S best selling cruising sailboat.

FOR BOAT SALES, CALL ANYTIME: (310) 621 2206
EMAIL: macaccountings@pacbell.net

Click here and we will send you a FREE 55 minute DVD video and a 16 page brochure for the MacGregor 26

LOTS MORE, PLEASE SCROLL DOWN
NEW VIDEO: MACGREGOR 26 SAILING IN GALE FORCE WINDS (click here) (Sailing in 50 mile per hour winds and huge waves - spectacular)

NEW PHOTOS: M26 SAILING IN GALE FORCE WINDS (click here)

PLAY OUR 5 minute video (CLICK HERE) (This a brief summary of the highlights of the full 1 our video shown below)

PLAY OUR 1 HOUR video (click here) (This shows the boat's design, construction, launching, rigging and performance. It is informative and really entertaining.

CLICK EACH PICTURE FOR A LARGER IMAGE

Sailing in a brisk wind and waterskiing
A very comfortable interior

Trailer it and sail it anywhere

NEW: Here is our new black boat. Click here for more info on the black boat.

Launch and rig in less than 15 minutes
In the tropics, waiting for the tide

Sailing in 50 mph winds and big waves (see video link at top of this page)

Cutaway view

Every year, for the past 35 years, the various models of the MacGregor 25 and MacGregor 26 have been the best selling cruising type sailboats, not only in the United States, but in the entire world. We can think of no other manufacturer,
of any type of product, that has so totally dominated its market for so long a period of time.

Please go through our web site for the many reasons why the MacGregor 26 has been such an overwhelming success.

MACGREGOR 26 FEATURES

24 MILES PER HOUR UNDER POWER WITH A 60 HP OUTBOARD

LENGTH: 25' 10" (7.87 meters)

WEIGHT EMPTY: 2550 LBS (1156 kilograms)

GREAT SAILING PERFORMANCE

POWERING RANGE AT 16 MPH: 115 MILES. MAXIMUM RANGE 283 MILES AT 6 MPH

MINIMIZE YOUR FUEL BILL: YOU CAN SAIL FOREVER FOR FREE.

EASILY TRAILERED AND LAUNCHED. NO NEED FOR EXPENSIVE IN-THE-WATER STORAGE

BUILT IN SOLID FOAM FLOTATION TO KEEP THE BOAT AFLOAT IN THE EVENT OF FLOODING OR DAMAGE

LAUNCH AND RIG IN 10 MINUTES

UNDER 8' WIDE FOR LEGAL TRAILERING

FLOATS IN 12" (.30 meters) OF WATER

WATER BALLAST SYSTEM FOR SELF RIGHTING STABILITY

REMOVABLE WATER BALLAST: 1150 LBS (521 kilograms)

PERMANENT BALLAST: 300 LBS (136 kilograms)

FULL STANDING HEADROOM

FULL GALLEY

ENCLOSED HEAD

SLEEPS 6. 2 DOUBLE BERTHS AND 2 SINGLES

WHEEL STEERING

WALK THROUGH TRANSOM

ALL FIBERGLASS CONSTRUCTION

STORAGE FOR TWO 12 GALLON (45 liter) FUEL TANKS
The MacGregor 26 is one of the fastest and best handling of the trailerable cruising sailboats. It is easy to sail, and easy to trailer to your favorite sailing waters. You don’t need an expensive mooring. It can be stored on its trailer, launched at any ramp, and rigged in just minutes.

On the trailer at highway speed, you can visit great places that water-bound boats will never see, and you can avoid the expense of in the water storage.

The MacGregor 26 offers high speed powering without compromising sailing performance. You can have the peace and quiet of sailing, or the fun of powering around at a good clip—over 22 mph. Unlike any other boat, it opens up a world of endless variety—sailing, swimming, fishing, diving, water skiing or just fooling around on the water. Its high speed under power lets you get to cruising waters that are out of reach for a conventional six mph sailboat.

You can live on this boat on land or on the water. Launch the boat, anchor in a quiet cove, and you can be as far away from the world as you want to be. You can have your own island, for free, at some of the most beautiful vacation areas on earth. Unlike land bound recreation vehicles, you will not be limited to crowded and expensive RV parks. You will never tire of the wonderful sensation of shutting off the engine and enjoying the quiet serenity of moving along under sail.

MacGregor has delivered over 5000 of the 26X, 3000 of the new 26M and a total of over 38,000 sailboats. They have been thoroughly proven over millions of hours of sailing. No other boats can match our quality, performance, comfort, convenience and low cost.

The price is low, the trailer is your mooring....and the wind is free.

NEW: Big bargains on boats used for publicity, demos and test, surplus factory equipment, and obsolete or overstocked boat parts and equipment. (CLICK HERE)

NEW: We have recently introduced an all new aluminum trailer. (CLICK HERE)

NEW: We have added a section that provides detailed comparisons between the MacGregor 26 and competing boats (CLICK HERE)

NEW: MACGREGOR 70', ANTHEM, FOR SALE
Our MacGregor 70 ketch rigged ANTHEM, is now for sale for $250,000. The boat is owned by MacGregor Yacht Corporation. We are building a new one to replace it. It is in showroom condition.

Anthem is one of the fastest boats on the West Coast. In a recent Newport to Ensenada race (the 120 mile, 420 boat race from Newport Beach, California to Ensenada, Mexico), it was the first split rig to finish, beating many of the very best west coast racing machines, including Merlin, Ragtime and Santa Cruz 70s. Anthem was first to finish in the 125 mile Marina Del Rey to San Diego race.

Even with a PHRF rating of minus 42, the boats has done well on corrected time.

Unlike the big racing boats and custom speedsters, Anthem has a full, plush interior, a very comfortable cockpit, and can be sailed single handed.

Anthem was the second MacGregor 70 to be built. It will go 12 mph under power. The interior is similar to the MacGregor 65 (100 were built). These were the best selling large cruising and racing sailboats in the history of sailing. We have added a lot of speed by using the ketch rig and a longer waterline.

Anthem is similar in construction and concept to the MacGregor 65, but it is a lot faster and more dramatic.

Anthem great looking and extremely comfortable. This famous ketch is one of the most beautiful sailboats ever built, and is offered at a bargain price. FOR A LOT MORE INFORMATION AND PHOTOS OF ANTHEM, CLICK HERE

DEALERS WANTED: Over the years, we have developed a strong dealer network. However, there are still a few selected areas where we would like to increase our dealer coverage. If you are interested in becoming a dealer, please give us a call.

ATTENTION MACGREGOR SUPPLIERS: We have added a section called SUPPLIER’S CORNER. It shows all of the items that we buy, with drawings and photos describing items that are built to our specifications. (CLICK HERE) or refer to SUPPLIER’S CORNER in the table of contents.

ATTENTION MACGREGOR OWNERS: PHOTOS AND VIDEOS NEEDED. If you have any good photos or videos of the new MacGregor 26, please let us know. We are always anxious to get more good images for our brochures and videos. MacGregor club events, family sailings scenes, racing scenes, images of sailing in unusual weather conditions, water skiing, or images of trips to unusual places would be more than welcome. If we use any of your work on our web site, brochures or videos, we will pay for the images and give you full credit and recognition as the photographer.
Roger MacGregor
MacGregor Yacht Corporation,
1631 Placentia,
Costa Mesa, California, 92627
Phone 949 642 6830
MacGregor 26... Factory website for the MacGregor 26', $22,900 trailerable sailboat, 24 mph, the WORLD'S best selling cruising sailboat.

STANDARD BOAT, $ 22,900

Ready to sail, including the following:

TRAILER:
Aluminum trailer with torsion bar axle, winch, lights, nose wheel jack, fiberglass fenders, and centering rails.

SAIL:
Mainsail (See option list for choice of jibs)

DECK HARDWARE:
Steering wheel and pedestal
Hinged steering seat for easy transom access
Foredeck hatch
Anchor locker
Outboard well for 5 to 60 hp outboards
Cockpit storage lockers for 2 each 12 gallon fuel tanks with tie down brackets
Mooring cleats
2 jib winches, 1 handle
Anodized mast and boom
Anchor roller
Deck tracks for jib and genoa
All required standing and running rigging
Hinged mast step and rotating mast

SAFETY:
Water ballast system
Positive foam flotation
Self-bailing cockpit
Non-skid deck surfaces
Bow pulpit and lifelines
Kick up twin rudders and centerboard
Mainsail reefing system
CABIN AND ACCOMMODATIONS:
- Full standing headroom
- Bulkhead mirror
- Upholstered hull sides
- Galley, with sink, 5 gallon water system, convenient storage lockers, space for a built in stove.
- Space for a portable ice chest
- Enclosed head compartment
- 2 double berths and 2 single berths
- Berth and inside sofa cushions, seat back cushions
- Table
- Carpet
- Cabin lock
- Full hull and deck liners
- Large side and forward windows

ELECTRICAL:
- Running and 4 interior lights
- Electrical panel
- 12 volt battery

COLORS:
- White hull and deck
- Black accent stripes, hull and deck
- Tan interior liners

OPTIONAL ITEMS

ENGINE: 60 HP EVINRUDE ETEC OUTBOARD, SALT WATER VERSION -- $7490
- Installed and ready to go, with pedestal mounted throttle and shift controls. The price includes the engine, installation cost, shifter and throttle assembly, dash mounted tachometer, ignition switch and key, tilt and trim switch, 12' wiring harness, snap in shifter and throttle control cables (2), propeller (14" diameter, 13" pitch), gas hose and primer squeeze bulb, 6 gallon fuel tank, motor cable boot and miscellaneous installation hardware.

Surge brake and anti-corrosion option added to the standard
aluminum trailer -- $598 The standard trailer is included in the price of the boat. The $584 option is the price added to the standard boat and trailer price, and includes the brake actuator, disc brakes, galvanized torsion bar axle, aluminum brake caliper housings, and zinc plated brake discs. This option also includes a boarding ladder mounted on the trailer near the trailer hitch.

Jib, 130 sq. ft -- $260

Genoa sail, 206 sq. ft (150%) -- $425 The Genoa jib is a large forward sail that replaces the smaller jib and provides a very large increase in sail area. Like the jib, it attaches to the forward wire that holds up the mast (headstay), and sheets to adjustable blocks mounted on a track on the cockpit coaming.

Genoa equipment (With adjustable fairlead blocks and sheets)-- $69

Jib equipment (with adjustable low profile fairlead blocks and sheets -- $69

Roller furling system-- (for jib and/or genoa)-- $495 This system consists of a tough plastic extrusion that slips over the headstay, and a hardware system for rotating the furling extrusion. The leading edge of either the jib or genoa slides into a groove on the rear side of the extrusion. By pulling on a line that leads back to the cockpit, the extrusion can be rotated, rolling up the jib or genoa just like a window shade is rolled up on it’s roller.

The roller furling system offers the single most effective way of exactly matching the amount of sail area to the amount of wind. The boat will sail very well with the jib or genoa completely rolled up,
partially unrolled, or completely unrolled to full size. The sail keeps it’s shape no matter how much is rolled in. It is particularly useful when sailing into the wind. If the wind becomes too strong, and the boat is leaning too much, simply roll up some headsail and ease the pressure on the rig. In many situations, the boat will actually sail faster with less sail. All this can be done from the cockpit, and it is not necessary for anyone to go to the foredeck to reduce sail area.

In areas where winds are generally heavy, skippers will usually keep the jib on the furler. In light wind areas, the genoa will be attached. It takes only a few minutes to switch the sails on the furler.

Cruising spinnaker, with sheets. (No additional equipment is required.)-- $475
The sail is easy to fly and colorful. It adds a lot of sail area and provides an amazing amount of speed when sailing downwind. It is flown and controlled just like a jib or genoa. Unlike conventional racing spinnakers, it does not require a spinnaker pole or extra hardware.

Vang (for better control of mainsail shape)-- $79

Mast raising system, with brake winch, side supports, pole and all hardware-- $155

Steering linkage bar, for connecting the steering system to the outboard motor -- $55

Self contained marine head-- $129
Table filler cushion -- $48

Cockpit seat cushions-- $190

Dark blue hull with white stripes -- $390 (Replaces white hull with black stripes)

Cockpit sun shade-- $575 The optional sunshade is a comfort on really hot days. It folds back, out of the way, when not in use. It can be left in place for powering or sailing. On a hot summer day, you will always be cooler on the water.

Boarding and swim ladder-- $168 The optional stainless steel ladder can be used for swimming or for boarding the boat while it is on the trailer. The ladder has a significant slope to the rear which makes it easier to use than one that is vertical.

Prices and specifications subject to change without notice. All prices are FOB Costa Mesa, California.
POWER, WATERSKI
SPINNAKER
SAFETY
EASY TO SAIL
HOW TO SAIL
WHY THE LOW PRICE
COST TO OWN
COMPARE 26X
COMPARE HUNTER EDGE
COMPANY HISTORY
HALL OF FAME AWARD
WHY BUY A SAILBOAT
MAGAZINE REVIEWS
SUPPLIERS' CORNER
SHIPPING
EXPORTING
FACTORY GARAGE SALE
MACGREGOR 65
MACGREGOR 70 ANTHEM
CONTACT US:

BOAT SALES: PHONE: (310) 621-2206 CALL ANYTIME

FACTORY OFFICE: PHONE: (949) 642 6830 8 AM to 3:30 PM
MONDAY THRU FRIDAY, PACIFIC STANDARD TIME

FACTORY OFFICE: FAX: (949 642 5379 EMAIL:
macaccountings@pacbell.net

INTERNATIONAL SALES

FOR BOATS TO BE EXPORTED OUTSIDE THE US AND CANADA, PLEASE CONTACT:

SHARP MARINE INDUSTRIES, 177 RIVERSIDE AVE - PMB 921,
NEWPORT BEACH, CALIFORNIA, 92663

PHONE: 949 642 9491

FAX: 949 642 5558
EMAIL: info@macgregorexport.com

WEBSITE: www.macgregorexport.com

FOR PARTS ORDERS AND ASSISTANCE WITH OLDER BOATS:

YOUR LOCAL DEALER WILL HAVE PARTS AND ITEMS FOR CURRENT BOATS.

FOR OLDER MODELS, INCLUDING ALL OF THE MACGREGOR AND VENTURE SAILBOATS PRODUCED FROM THE BEGINNING OF TIME (1968), UP TO AND INCLUDING THE MACGREGOR 26X,

CONTACT BLUEWATER YACHTS IN SEATTLE. THEY HAVE AN EXTENSIVE STOCK OF PARTS, EQUIPMENT, AND LOTS OF GOOD ADVICE FOR EVERY MACGREGOR BUILT SAILBOAT.

BLUEWATER YACHTS, 2400 WESTLAKE AVE N. #L1. SEATTLE WASHINGTON 98019,

PHONE: (800) 688-8626

EMAIL: boatsales@bwyachts.com.

FAX: (206) 281-8704

WEBSITE: bwyachts.com
Web site: WWW.MacGregor26.com
MacGregor 26... Factory web site for the MacGregor 26', $22,900 trailerable sailboat, 24 mph, the WORLD'S best selling cruising sailboat.

brochures

For a free, 16 page color brochure covering every aspect of the new MacGregor 26, please contact us. You will also receive a price list and a listing of all of our dealers.

CLICK HERE TO VIEW OR DOWNLOAD OUR MACGREGOR 26 BROCHURE

Please wait, it takes a while

This will read at its best using Adobe Reader. This program can be downloaded for free from the adobe.com website.
MacGregor 26... Factory web site for the MacGregor 26', $22,900 trailerable sailboat, 24 mph, the WORLD'S best selling cruising sailboat.

OWNER'S INSTRUCTION MANUAL

VIEW OR DOWNLOAD ADOBE PDF FILE OF THE MACGREGOR 26 INSTRUCTION MANUAL

This will read at its best using Adobe Reader. This program can be downloaded for free from the adobe.com website.
MacGregor 26... Factory website for the MacGregor 26', $22,900 trailerable sailboat, 24 mph, the WORLD'S best selling cruising sailboat.

A FREE 55 MINUTE VIDEO DISK IS NOW AVAILABLE FOR THE MACGREGOR 26

CLICK HERE TO PLAY the video of the 26 sailing in 51 mph winds and BIG WAVES

Click here to download the above video

CLICK HERE TO PLAY the 5 minute macgregor 26 video

This 5 minute video includes the highlights of the full length 1 hour video.

Click here to download the above video

CLICK HERE TO PLAY the ONE HOUR macgregor 26 video

the first 5 minutes of this video is the 5 minute video shown above.

Click here to download the above video

When you download these videos, they are stored on your computer in a folder called Temporary Internet Files. This folder can be found in Documents and settings. The 5 minute video is 3.24 megabytes, and is named 5_min_1_ea_oct_15_2009_small.flv. The one hour video is 32 megabytes, named 55_min_oct_14_2009.flv. Make sure that your internet browser has allocated enough space to accept
VIDEO DESCRIPTION

We have an excellent DVD disk showing all aspects of the boat’s design, construction, sailing performance, launching, rigging and powering. It is informative and really entertaining. If you are interested in a MacGregor or any other type of sailboat, this video will be more than worthwhile. For overseas customers, please contact Sharp Marine (See "exporting" in this web site's table of contents.)

The video has scenes showing the MacGregor 26 being trailered to distant sailing waters. We take you through the launching and rigging of the boat. There are a lot of entertaining scenes showing the difficulties trying to get competitor's boats in and out of the water. This is followed by a complete description of the many details of the Macgregor 26 that eliminate all of these launching and rigging problems, and that allow the boat to be launched and rigged in less than 15 minutes. This alone is worth the price of the video.

There is a detailed tour of the interior, showing all of the boat's features. All of the deck hardware and rigging is examined thoroughly. The video will show you how to launch the boat, raise the mast, and sail or power the boat. There is a detailed description of the advantages of the water ballast system, and how it works.

No boat is easier to sail, and this video will give you all of the reasons why this is so true.

There are many sailing and powering scenes taken on some of the world's most beautiful sailing waters, including England, New Zealand and the Pacific Ocean off the coast of California (including Catalina Island). There are a lot of scenes taken at interesting bays,
harbors and quiet anchorages.

You will see water skiing, light and heavy air sailing, and high speed powering in quiet lakes and in the open ocean. The video clearly shows how much fun a family can have with this boat.

The video also includes a tour through our plant; one of the most modern boat building factory in the world. We show every detail of the construction of the MacGregor 26. There is an interesting section on fiberglass construction, showing exactly how the boat is built, and a description of each of the materials that goes into the fiberglass layup. Then we show you how the boat is assembled. There is also a segment on the fabrication of our trailers.

We then show how the boats are inspected and shipped.

Above all, the video gives a vivid graphic presentation of why the MacGregor 26 is the best selling cruising sailboat in the world.

When you order a video, we will include a free 16 page color brochure, price list and the name of your nearest dealer.

Order videos or brochures via email on our home page, or print a copy of this form, fill it out and mail it to us, and we will immediately send you the following:

- ONE hour dvd
- 16 page color brochure
- price list
- list of our dealers

Customer Name:

Street Address: ______________________________________

City: ___

State: ________________________ Zip Code: _____________

Email address: _________________

SEND FORM TO:

MacGregor Yacht Corporation

1631 Placentia Avenue

Costa Mesa, California, 92627

OR, IF YOU PREFER, ORDER YOUR BROCHURE AND VIDEO
BY PHONE, EMAIL OR FAX.

Email: macaccountings@pacbell.net

Telephone: 949 642 6830

Fax: 949 642 5379

If you use email or fax, please include all of the information
required on the above form.
MacGregor 26... Factory website for the MacGregor 26', $22,900 trailerable sailboat, 24 mph, the WORLD'S best selling cruising sailboat.

MACGREGOR 26 LINE DRAWINGS
MacGregor 26... Factory website for the MacGregor 26', $22,900 trailerable sailboat, 24 mph, the WORLD'S best selling cruising sailboat.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Measurement</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length overall</td>
<td>25 feet, 10 inches</td>
<td>7.85 meters</td>
</tr>
<tr>
<td>Waterline length</td>
<td>23 feet, 2 inches</td>
<td>7.06 meters</td>
</tr>
<tr>
<td>Width (Beam)</td>
<td>7 feet, 9 inches</td>
<td>2.36 meters</td>
</tr>
<tr>
<td>Draft, board up</td>
<td>12 inches</td>
<td>.30 meters</td>
</tr>
<tr>
<td>Draft, board down</td>
<td>5 feet, 9 inches</td>
<td>1.75 meters</td>
</tr>
<tr>
<td>Engine capacity</td>
<td>5 to 60 h.p.</td>
<td>45 kw</td>
</tr>
<tr>
<td>Speed, 60 hp (45 KW) outboard</td>
<td>24 mph</td>
<td></td>
</tr>
</tbody>
</table>

- **Water ballast**: 1150 lbs, 521 kilograms
- **Permanent ballast**: 300 lbs, 136 kilograms
<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HOW TO SAIL</td>
<td></td>
</tr>
<tr>
<td>WHY THE LOW PRICE</td>
<td></td>
</tr>
<tr>
<td>COST TO OWN</td>
<td></td>
</tr>
<tr>
<td>COMPARE 26X</td>
<td></td>
</tr>
<tr>
<td>COMPARE HUNTER EDGE</td>
<td></td>
</tr>
<tr>
<td>COMPANY HISTORY</td>
<td></td>
</tr>
<tr>
<td>HALL OF FAME AWARD</td>
<td></td>
</tr>
<tr>
<td>WHY BUY A SAILBOAT</td>
<td></td>
</tr>
<tr>
<td>MAGAZINE REVIEWS</td>
<td></td>
</tr>
<tr>
<td>SUPPLIERS' CORNER</td>
<td></td>
</tr>
<tr>
<td>SHIPPING</td>
<td></td>
</tr>
<tr>
<td>EXPORTING</td>
<td></td>
</tr>
<tr>
<td>FACTORY GARAGE SALE</td>
<td></td>
</tr>
<tr>
<td>MACGREGOR 65</td>
<td></td>
</tr>
<tr>
<td>MACGREGOR 70 ANTHEM</td>
<td></td>
</tr>
<tr>
<td>Boat weight, empty:</td>
<td>2550 lbs</td>
</tr>
<tr>
<td>Trailer weight with surge brakes:</td>
<td>575 lbs</td>
</tr>
<tr>
<td>Mainsail:</td>
<td>170 sq. ft</td>
</tr>
<tr>
<td>Jib (100%):</td>
<td>130 sq. ft</td>
</tr>
<tr>
<td>Main and jib:</td>
<td>300 sq. ft</td>
</tr>
<tr>
<td>Genoa (150%):</td>
<td>206 sq. ft</td>
</tr>
<tr>
<td>Cruising spinnaker:</td>
<td>350 sq. ft</td>
</tr>
<tr>
<td>Fresh water capacity:</td>
<td>5 gallons</td>
</tr>
<tr>
<td>Fuel capacity:</td>
<td>24 gallons</td>
</tr>
<tr>
<td>Mast height above deck:</td>
<td>30 feet</td>
</tr>
<tr>
<td>Mast height above water:</td>
<td>35 feet</td>
</tr>
<tr>
<td>Cabin headroom:</td>
<td>6 feet</td>
</tr>
<tr>
<td>Berths (sleeps 6):</td>
<td>2 doubles 2 singles</td>
</tr>
<tr>
<td>Sails:</td>
<td>Doyle</td>
</tr>
<tr>
<td>Winches:</td>
<td>Lewmar</td>
</tr>
</tbody>
</table>
The weathertight cabin offers full standing headroom, and comfortable accommodations for family cruising. The large sofa seats and dinette seats can be used for conversational seating, or as comfortable berths. The galley, with lots of storage space, is on the left. It has a sink, large counter space, and room for a stove. The galley top is standard kitchen counter height. Behind the mirrored bulkhead there is a fully enclosed head compartment. This is an absolute necessity for any voyage lasting more than a few hours. A large double berth is forward, with a big overhead foredeck hatch for good ventilation. The table is large and sturdy, and four people can comfortably have a meal. The cabin itself will easily seat 8 or more people.
Looking toward the rear of the cabin, you can see the large entry hatch, entry steps and a really big rear berth. It is about the size of a queen sized bed. The berth has full sitting headroom over a large area. A berth this large (6’6 x 5’ 9”) is rare in a boat of any size. A large portable ice chest can be stored in place of the removable cushion on the forward starboard corner of the rear berth. There is also a large area under the rear dinette seat for an optional ice chest. The battery is located in the compartment directly under the ladder. The cockpit seats are over 6 feet long, and can be used on a nice night for outside sleeping.

This cutaway drawing shows the general interior layout. The main feature of the interior is the large galley that slides fore and aft and locks in several positions. In the forward position (shown as a shadow), there is excellent access to the large rear double berth. With the galley to the rear, there is a lot more room in the main cabin for seating and socializing. The port side seat, 8’ 2” long, can be used as a large berth. Even with the galley fully to the rear, the big rear berth still makes a usable double, though access to the berth is restricted on the port side. The rear dinette seat back is easily removable for access to the rear berth on the starboard side.
This view shows the galley in the forward position. The counter height is the same as you will find in the average home kitchen. There is full standing headroom when working at the galley. There is a small rear seat behind the galley, and easy access to the big rear berth. The dinette seat back lifts out for access to the rear berth. The galley has its own water supply, room for an optional stove, and lots of storage. The black square above the cabin light is the electrical panel. There are tunnels throughout the deck liner for wiring for additional electrical items. The electrical panel and the round hatch on the opposite side are removable for access to the back of instruments that may be mounted on the rear face of the cabin.

This is the galley in the rear position. In this position, the majority of the galley is still out in the main cabin, and the stove and sink can be used. The galley can also be moved back another 12” to allow even more space in the cabin. The galley is mounted on a set of rails that
are recessed into the seat. It is really easy to move, even when loaded, and can be locked in place at each of its 3 positions. The seat cushions are 5” thick, and the seat backs are soft and comfortable. The floors are carpeted, and all surfaces are nicely finished.

The table lowers to provide a very wide 7’ 5” single berth. The 26 will sleep a total of 6 adults. This is far too large of a crowd, but it is possible. The galley is shown in the rear position, allowing for lots of seating or for a very long single berth.

This is the enclosed head compartment. We offer a portable and removable head, but is it possible to install a conventional thru hull marine toilet and holding tank.
There is a good, solid head door for privacy. The door folds in the center and hinges against the back of the mirrored bulkhead. This setup is a lot better than the total lack of privacy offered by the under-bunk heads found in most small boats.

There is nothing better than spending the night on a cozy little yacht at a quiet anchorage. With its retracting rudders and daggerboard, the 26 can be taken into secluded, quiet coves and anchorages that other sailboats, with their deep keels, cannot reach.
MacGregor developed this concept. It has been widely copied, and is now the standard throughout the trailerable sailboat industry. It makes it possible to have very light weight for powering and trailering, and the heavy stability necessary for safe sailing. After launching, the transom valve is opened and a tank in the bottom of the hull is gravity filled with 1150 lbs of sea water. It takes about 5 minutes. The valve is then closed, trapping the water. Under power or sail, the ballast makes the boat stable and self righting. When the boat is floated back onto its trailer, the valve is opened. The car and trailer start up the ramp and the water drains out of the boat, leaving a trailering package that is lighter than most small powerboats. You can also empty the tank while the boat is in the water. Under power, at about 6 mph, open the valve on the transom and the tank will drain in about 5 minutes.
WATER BALLAST

POWER, WATERSKI

SPINNAKER

SAFETY

EASY TO SAIL

HOW TO SAIL

WHY THE LOW PRICE

COST TO OWN

COMPARE 26X

COMPARE HUNTER EDGE

COMPANY HISTORY

HALL OF FAME AWARD

WHY BUY A SAILBOAT

MAGAZINE REVIEWS

SUPPLIERS’ CORNER

SHIPPING

EXPORTING

FACTORY GARAGE SALE

MACGREGOR 65

MACGREGOR 70 ANTHEM
This optional sunshade is a comfort on really hot days. It folds back, out of the way, when not in use. It can be left in place for powering or sailing. On a hot summer day, you will always be cooler on the water.
Anchor roller with jib and genoa furler system

Jib track
Mainsheet traveller

Foredeck hatch

Boarding ladder
Jib and genoa winch, starboard side

Steering pedestal and engine controls
Cockpit and steering

The MacGregor 26 has a pedestal mounted steering wheel, rather than the cumbersome tiller found on most trailerable sailboats. The wheel steering is standard and takes up less room than a tiller. It is far easier and more natural to steer with a wheel than with a tiller, and a lot more comfortable. It makes the boat a lot easier to sail. If you can steer a car, you can easily steer this boat. The seats have high backs, and we did a lot of engineering to make sure they are comfortable. The optional seat cushions add a lot to the comfort. The cockpit is self bailing. (See the "safety" section of the web site to see what this means and why it is important).
This view, from overhead, shows the cockpit and general deck layout, as well as our fisherman trying his luck. The steering seat is raised to allow the helmsman to see over the cabin. The seat hinges away to allow access to the engine and swim ladder. The steering seat, in the closed position, provides the security of a fully surrounded cockpit. When it is opened, you have a walk thru transom for easy boarding from the ground (when the boat is on its trailer), from the water, or from a dock.

The mainsheet mounts to a track at the forward end of the cockpit.

All the sail, rudder and daggergboard controls are positioned for easy use.

There are storage compartments under each of the seats. Each compartment will hold a 12 gallon fuel can. These compartments are completely isolated from the interior of the boat, so there is no chance for dangerous fuel to enter the boat.

This picture shows the transom, with the rudders and engine in the up position.
Sailing with engine retracted and the rudders down

The steering wheel connects to the twin rudders for sailing, or to the outboard motor for powering. With the wheel connected to the motor, and the rudders retracted, you steer as you would with a conventional powerboat. (When you turn the steering wheel, the engine turns.) When under power at moderate or high speed, the kick up rudders are in the up position to reduce drag. For excellent control at low speed, the wheel is connected to both the engine and the rudders. Changing the steering system between rudders and engine takes only a few seconds.

The optional sunshade provides protection for a large area of the cockpit. It folds back out of the way when not in use.
The MacGregor 26 is built to outlast all of us. Each boat is built of individual layers of fiberglass fabrics, laid in place by hand, in a carefully controlled process. Hulls and decks are light, but strong, with extra reinforcement at all high stress points.

Most of our competitors use "chopper guns" to build their boats. These are devices for spraying a mixture of resin and very short strands of fiberglass. We don't use them, even though they reduce cost. They do not, in our opinion, give adequate impact strength or controllable hull and deck thickness. They result in heavy laminates with low fiberglass to resin ratios, accounting for much of the excess weight found in many competitor's boats. Light weight is the key to
easy trailering and to high performance.

We have stayed away from sandwich construction. Most of the failures of fiberglass hulls involve the rot or delamination of balsa or foam core materials. We use only solid fiberglass laminates in the 26’s hull. If exposed to water for long periods, balsa coring material can rot and literally turn to soup, causing major structural problems. Balsa is fine, in our opinion, for decks and structures that are not constantly immersed in water, as long as there is no balsa near holes for hardware. Foam cores are also widely used for stiffening hulls, however, they offer less than 200 pounds of adhesion per square inch. That is not much better than rubber cement. It takes over 2500 lbs per square inch to delaminate the resin bonds that hold our hull laminates together.

Production begins by spraying the exterior color (polyester gel coat) on a highly polished and waxed 3 ton hull mold cavity. The waterline and accent stripes are also sprayed on at this point. In building a fiberglass boat, the first thing you actually make is the exterior paint job. The rest of the hull is laid up against the inside of this paint (gelcoat) layer.
Alternating layers of fiberglass fabrics are then applied. Each layer is saturated with polyester resin and all air and excess resin is removed with brushes and squeegees. The resin is then allowed to harden before the next layer is applied. One of the benefits of fiberglass construction is that the thickness can be made to vary (by adding additional layers) to match the stresses that each area encounters. For example, where the rudders and chainplates are attached, many extra layers are added to distribute the loads thru the hull. The resulting laminates are of the highest quality.

The cured hull is then removed from the mold. In the case of the hulls, water is injected between the hull and its mold to literally float the hull free from the mold. Each part comes out with a high gloss and molded in black stripes. All the fiberglass parts are built in precision molds in the same manner as the hull.
Here is the deck being removed from its mold. The window accent color and the non-skid deck surfaces are molded in. The deck liners have already been bonded in place. (This picture shows the deck of a 26X.)

These are the fiberglass parts that make up the boat. At the left is the hull, still in its mold. Notice that the water tank and daggerboard trunk are molded in as part of the hull. Next is the deck, the deck liners, and the hull liner. On the right are the rudders, daggerboard, galley parts, hatches and other smaller parts.
After the parts are removed from their molds, they are trimmed. When the parts are moved into assembly, they are predrilled for hardware, using elaborate hole locating fixtures. Hardware is then bolted in place. Most hardware is attached before the hull and deck are joined together, to make for easier assembly. Even so, you can easily get at all the nuts and bolts later on if necessary. All items are thru bolted, with large backup washers under the nuts. You will notice that other boats have lots of nuts and bolts showing on the inside, looking a bit mechanical. On the MacGregor 26, the nuts are hidden behind small covers that match the interior gel coat color. The result is a smoother, more finished interior.

The hull and deck are joined with 3/16" bolts on 4" centers. Top grade adhesive is used to insure a watertight seal. Many builders use screws or pop rivets for this joint. Bolts are better. Our bolted hull to deck joining system is strong, but compact, and adds little to the width of the boat. Many of our competitors use wide joining flanges, which contribute a lot to their beam, but add very little to strength or usable inside space.
Automated router system

We use automation wherever possible to reduce costs and improve quality. Here you see a computer controlled router carving out a wooden master "plug" from which rudder molds are made.

Hull plug

This is the full size mockup, or "plug," that was used to make the production molds for the boat. The shapes were cut on a computer controlled router. The plug has to be absolutely perfect. If there is a
flaw on the surface, the flaw will be transferred to the production molds and then to the parts produced from those molds. Molds are layed up over the plug in much the same manner as a fiberglass hull is layed up in a mold, except that the molds are much heavier.

This is the plug for the deck. It is complete down to the non-skid surfaces that will eventually become part of the mold and the finished production parts. One of the big tricks is to prepare the surface of the plug so that the molds can be removed without damaging the plug. We use a lot of high quality wax and thin sprayed on parting agents to permit easy release.

We are building and selling a lot of these boats. A new one comes out of the plant door every 4 hours. They are being shipped in containers all over the world.
NEW ALUMINUM TRAILERS

We have recently introduced an aluminum trailer to replace the older steel trailers. Aluminum trailers offer many advantages. They are a lot lighter, 183 pounds less than the comparable steel trailers.
Aluminum is far more corrosion resistant. The frames are not painted, and the aluminum will keep its good looks for a long, long time. We have a standard non brake aluminum trailer, and an optional deluxe trailer that has hydraulic surge disc brakes, galvanized axles, aluminum caliper housings, zinc plated brake discs, fiberglass fenders and a boarding ladder near the trailer hitch. Both types of trailer have torsion bar suspension, rather than springs, and the ride for the boat is a lot smoother. Under most state laws, the surge brakes will be required.

Surge brakes are simple and reliable. When the car brakes are applied, an actuator built into the trailer hitch compresses, and hydraulic pressure is generated to apply force to the trailer's disc brakes. (Click here for more information on the new trailer.)

The boat is big, but it is really light, far lighter than competing trailerable cruisers. It is light enough to be towed behind standard sized cars. We consider that the weight of the 26, with all normal gear, is the maximum practical weight for easy ramp launching and trailering.

The 26 is just under 8’ wide, and can be legally trailered everywhere in the United States. Most of our competitors are over 8’ wide, and require permits for trailering in many states, including New York, Missouri, Pennsylvania, Oregon, Illinois and Arizona. Many states also place severe restrictions on over wide loads, including limitations on weekend travel. At best, getting a permit is a hassle, and no one needs another trip to the local department of motor vehicles. All states prohibit loads over 8' 6" without a permit. It is best to check the laws of all states or countries in which you wish to travel. You may not get stopped if you are over width, but if you are involved in an accident, the lawyers will certainly be interested in the width of the trailer and boat.
We have recently introduced a strong, lightweight aluminum trailer to replace our older steel trailers.

There are two models: (See the price list section of this web site [click here](http://www.macgregor26.com/aluminum_trailer/aluminum_trailer.htm) for prices.)

The standard trailer has an aluminum frame, a painted torsion bar axle, fiberglass fenders and a bow stand with no boarding ladder.

The deluxe trailer is similar to the standard trailer, except that it has surge brakes, a galvanized torsion bar axle, aluminum brake caliper holders, zinc plated disc brake rotors, and a boarding ladder near the trailer hitch.

I suspect that most customers will opt for the deluxe trailer package, since most states require trailer brakes. The standard model will be useful as a yard dolly or as a shipping cradle, and we expect to sell a
lot of these to the overseas markets and any area that does not require brakes on the trailers.

Surge brakes are simple and reliable. When the car brakes are applied, the boat trailer begins to push against the trailer hitch, and an actuator built into the trailer hitch creates pressure in the hydraulic system to generate force to activate the trailer's disc brakes.

The aluminum trailer is about 180 pounds lighter than the comparable steel trailer. This is a big benefit.

Both models of the aluminum offer superior corrosion resistance. The deluxe model, with the galvanized axle and zinc plated brake parts, will be about as corrosion resistant as a trailer can be. The aluminum is not painted, and should retain its good looks for a long, long time. Steel parts are being painted with epoxy primer and linear polyurethane (Dupont Imron).

BOW STAND AND AND BOARDING LADDER

On both models, the trailer tongue and bow stand will be painted steel. We are required by law to have a steel trailer tongue (tow bar). We are better off with a welded steel bow stand and boarding ladder to avoid drilling more bolt holes in the 3” square trailer tow bar. The bow stand is the least likely part of the trailer to get in the water, and the painted steel should hold up well. Everything else on the trailers is aluminum, stainless steel, plastic, galvanized steel or plated steel, wood and carpet. Not much to corrode here.
CORROSION PROOF FIBERGLASS FENDERS

The fenders are fiberglass, and are rather nifty looking. The license plate and tail light holders are corrosion proof plastic (the same material as the sliding hatch rails on the MacGregor 26).

The main frames rails are I beams, 3 ½” x 5” with .280” flanges. These are a lot more massive than the steel C channel, and the trailer looks a lot more substantial.

TRAILER I BEAM SIDE RAILS

The vertical guide rails are aluminum, taller than on the steel trailer, and keep the boat centered.

We have eliminated the 2 guide tubes on the bow stand. As the boat comes onto the trailer, the steep V support at the front of the hull centers the boat nicely into the rubber bow block. This saves some weight and complexity.
This is a photo of the torsion bar axle. The marine industry is switching away from springs and shackles to the torsion bar system. Virtually all of the aluminum trailers being built for the marine industry sit on torsion bar axles. They are more costly, but well worth it.

The axle itself (3” x 3” x .180 wall) is bolted directly to the trailer frame. There is a rubber sleeve in each end of the axle. A smaller square tube fits inside the rubber sleeve, and the rubber allows the smaller tube to rotate to a limited degree within the axle tube.

The wheels are mounted to a trailing arm that is part of the smaller square insert tube. The up and down motion of the trailing arms, rotating against the rubber insert, provides the springing action.

The trailing arm fits over splines in the insert tube, and the angle of the trailing arm can be adjusted to raise or lower the trailer. These systems provide a superb ride and are very durable. This is high quality stuff made by one of the best axle suppliers in the industry.

To save weight, we have a length of 5/32 upper shroud wire steel cable across the trailer to catch the daggerboard if it comes undone. This replaces the 1” pipe used on the steel trailers.
Anywhere you can car-launch a 15' rowboat, you can launch a MacGregor 26. There are ramps everywhere, and they cost very little to use, typically $2 to $5. Many are free.

Launching is easy because the boat sits lower on its trailer than any other trailerable cruiser.

The launching procedure is simple. The car is backed down the ramp until the boat just starts to float free of the trailer (normally, the car tires will be just touching the water). The bow line is released and one person gets on the boat, starts the motor, and powers the boat off the trailer. To recover the boat, the procedure is reversed. Under outboard power (it can be done under sail, but not as easily), the boat is driven onto the trailer until it hits the bow stop at the front of the trailer. With the motor still running to keep the nose of the boat pressed against the bow support, the crew goes forward and down the trailer ladder. The bow line is then connected and the boat is winched in tight. There are guide posts at the rear of the trailer, and a large V at the nose to keep the boat centered as it goes on and off the trailer. There is also a ladder at the front of the trailer to make it easy to get up on the boat.

On its trailer, the 26's waterline is only 27" from the ground. This distance is the best indicator of difficulty in launching any boat.

The higher the boat sits on its trailer, the more likely you will have to
drown your car for the boat to float free. Here are some comparable measurements:

MacGregor 26--- 27"
Catalina 22 swing keel--- 36"
Capri 22 winged keel--- 45"
Catalina 22 winged keel--- 45"
Catalina 25 swing keel--- 47"
Catalina 250--- 33"
Hunter 18--- 36"
Hunter 23.5--- 32"
Hunter 26--- 36"
Westwright Potter 19 ft --- 31"

On a typical ramp, every inch higher on the trailer means that the trailer and car will have to go 12” farther down the ramp for the boat to float free.

Some builders use extension tongues to get deep draft boats farther down the ramp without dunking the car. This is OK, but ramps are built for typical length trailers without extensions. If the trailer wheels go off the end of the paved portion, major help is often needed.

Once the 26 is launched, it needs only 12” of water to float. It will sail in places most other boats simply cannot go. Unlike most other trailerable cruisers, the 26 has a daggerboard that retracts completely into the hull, allowing the boat to be launched and beached without fear of damage to the centerboard system.
This shows the boat being launched at a ramp in the Persian Gulf.
One person can raise the mast, launch the boat and sail away in 10 to 15 minutes.

Optional mast raising system

The mast is lifted using a small brake winch mounted on the mast raising pole (The term "brake winch" means a winch that you crank both up and down. If you let go of the handle under load, the winch drum will stay put and not spin wildly). The mast is so light that a kid can raise it. The system can be left in place while sailing. Even without this option, one person can easily raise and lower the mast by hand.

Raise and lower the mast while under way

There are lots of bridges, and the best sailing is often on the other side. The mast raising system can be used to handle this problem. Just lower the mast and duck under. For trailering and for going under bridges, you disconnect only the forward mast support wire. The other rigging always remains in place.

Ours is specifically designed for trailering. We use stay adjusters, rather than turnbuckles, for the wires that support the mast. With masts that are raised and lowered, turnbuckle bending and failure is very common. Stay adjusters are stronger and far more reliable. Also, we bolt the support wires to the mast, rather than using removable "T" fittings that can fall off and allow the wires to tangle up in the trailer wheels when on the road.

We use double nicopress fittings on the mast support wires because
of their reliability. Swaged fittings have a tendency to crack, and it is impossible to determine their true condition without X-ray. The nicopress fittings, in contrast, are easy to inspect. We have had remarkable success with these fittings over a long period of years. On hang gliders and ultra light aircraft, you will always see nicopress and not swaged fittings. These guys really have their life on the line when choosing hardware.

At one time we used full battened mainsails. We have switched to soft sails for the following reasons: Full battened sails have to be rolled up in a long, bulky tube and take up a lot of room in the boat when stored. The battens press hard against the mast and make the mainsail more difficult to raise and lower. The long battens are subject to breakage when they press hard and chafe against the mast support wires when running downwind. They are heavier, and weight aloft is critical. They make tacking more difficult, and, for a given sail size, they are not as fast as a conventional sail.
MacGregor 26... Factory website for the MacGregor 26', $22,900 trailerable sailboat, 24 mph, the WORLD'S best selling cruising sailboat.

MACGREGOR 26 SAILING PERFORMANCE

Click on any picture for a larger image.

MAINSAIL AND JIB
SAILING PERFORMANCE: If you are buying a sailboat for the first time, performance and racing may seem of little interest to you. However, a boat that performs well is generally safer and easier to sail. It will certainly yield greater long term enjoyment.

The 26 balances beautifully. The big twin rudders give excellent control. The boat is light. A light boat like this requires less sail area to sail fast, so sail handling is easy. The 26’s light weight and its powerboat underbelly allow the boat to get up on top of the water and plane in heavy winds. In such conditions, these boats have exceeded 17 mph under sail. Most small sailboats, with their round bottoms, have speeds limited to around 5 to 6 mph.

You can always make a fast boat go slower by reducing sail, but you can’t make a slow boat sail fast. There is no sacred principle that
SAILING

says a great cruising sailboat should be slow, and there is no greater frustration than a comfortable houseboat that just doesn’t sail. The MacGregor 26 offers the amenities of a houseboat combined with great performance sailing. There are a lot of boats on the market that do not sail fast or handle well. The best bet is to sail any boat that you intend to buy, or watch it sailing competitively against other sailboats. The turkeys will be obvious.

The rotating rig raises and lowers like a conventional mast, and requires no attention when sailing. As the boat tacks, the mast automatically aligns itself to the proper angle without human intervention. With the rotating mast, the boat heels less and goes faster. On a conventional rig, it is difficult to sail with only the mainsail. With the rotating rig, the boat sails extremely well on main alone. When the wind kicks up, getting rid of the jib and going with just the mainsail makes sailing a lot easier.

DAGGERBOARD: The long, deep daggerboard keeps the boat from sliding sideways when sailing into the wind. The board is controlled by a line leading to the cockpit, and can be pulled completely up into the boat for powering, beaching, or downwind sailing. The long, thin airfoil is far more efficient than a short, wide one. This is why racing sailboat keels are deep, and why sailplane wings are long and thin. The efficient shape increases lift and reduces drag as the boat sails into the wind. This is one of the major reasons that the new 26 will point closer into the wind and sail faster than other trailerables.

The vertical retracting daggerboard has major advantages over a centerboard that swings back into the hull. The centerboard requires a huge, drag producing cavity in the bottom of the hull. It also requires a large 6 foot long bump protruding upward into the boat, interfering with the most useful part of the cabin. The big hole required for centerboard retraction presents a major structural problem. Unlike daggerboards, centerboards require lots of care and
maintenance, and involve underwater metal, lines and holes through the hull. The daggerboard can be lifted straight out of the top of the trunk for repair or maintenance. Unlike a centerboard, the daggerboard can be partially raised for going upwind in shallow water, while still retaining the boat's sailing balance. A daggerboard is less likely to rattle around when on a mooring in bumpy water. On the down side, a daggerboard will bring the boat to a stop if it hits an underwater object, as will any fixed keel on a conventional boat. Unlike the centerboards on other trailerables, the daggerboard retracts completely into the hull, allowing beaching without fear of damage.

The picture above shows the 26 racing, in really light winds, against our MacGregor 70. The smart money was bet on the big boat, which is one of the world's fastest production sailboats. The 26, using the large genoa headsail, actually hung in there pretty well for a while. This is an extreme example of "blanketing", where one boat (the 70) blocks the competitors wind. Whenever 2 boats are sailing in the same direction, there is a race, and sailboat racing is fun.
Mainsail only
Sailing with mainsail only. The rotating mast makes the mainsail very effective, and the boat performs very well with just the main. For lazy sailing, this is perfect.

LEARNING TO SAIL: No boat is easier to sail. You can learn to sail in an afternoon. Our owner’s instructions and web site have excellent instructions. Pick a nice day with a light breeze. Launch the boat, fill the ballast tank and buzz around with the engine until you get the hang of it. It is no tougher than driving a car. Then set the mainsail and let the wind provide some of the power. Keep the engine running at idle to get you out of any tight places. An hour or so of this and you will have a pretty good idea of how it all works. Then add the jib. An afternoon like this and you will be fairly accomplished.

To learn to sail is easy. To learn to make a boat sail to perfection can take forever (this is one of the great joys of the sport). The best argument for learning to sail is that once you start, you will stay with it for a lifetime. It is that much fun.

You will never tire of the wonderful sensation of shutting off the engine and enjoying the quiet serenity of moving along under sail. You can sail forever, for free. There is no nicer or lower cost way to spend time than sailing. There are few things in the world that are as quiet, graceful and downright fun. You will find no better way to spend an hour, a weekend or an entire vacation. From the vantage point of a sailboat, the normal cares of the world seem small. A sailboat is versatile. For a couple, put on the music, fill the ice chest and you have romance. It is also a wonderful sport for a family. Most of the
families that own these boats have children, and the kids seem to love it. If you want thrills, few sports can equal heavy weather sailboat racing.

If you like people, crowds and action, a sailboat can get you there. There is also much to be said for quietly sailing off all by yourself. Sailing is one of the few pastimes left where you can get away from the crowds. There are thousands of quiet coves, rivers, islands, anchorages and secluded waterways. Many of the best vacation places are at the edge of water. Unfortunately, the land side is packed with humanity. The water side has barely been touched. With a boat as your own private island, you can enjoy all the beauty and seclusion you want...and the fishing is usually good.
POWERING AND WATERSKIING: With the 60 horsepower outboard, the 26 will go about 24 mph. It will easily pull a water-skier. This adds one more bit of fun to the voyage. It will actually pull most adults at high enough speeds to create some real excitement. (Forget about pulling a crowd.) This picture was taken just off the California coastline.
THE MACGREGOR 26 IS A REALLY GOOD POWERBOAT. At high speed, it has a remarkably comfortable, stable ride. The very sharp entry slices thru waves efficiently. It is highly maneuverable, and only a light touch on the wheel is required to hold a perfect course. Ample fuel storage is provided. There are storage hatches in the cockpit that will hold 2 standard 12 gallon fuel tanks. If you are not interested in high speed powering, the boat performs well with a 5 or 10 horsepower engine.

We limited the engine size to 60 hp for a number of reasons. An electric start 60 hp motor provides lots of speed, (approximately 24 miles per hour) yet it is light enough so that sailing performance is not compromised. It is about the largest engine that can be started by hand, a nice feature if your battery goes dead. Also, the heavier, higher horsepower engines really eat up gas.

WHEEL STEERING. It is easier and more natural to drive the boat with a steering wheel than with a tiller, and a lot more comfortable. The steering pedestal mounts on a narrow pylon to allow lots of foot room in the cockpit.

THE 26 HAS TWO ENGINES, THE SAILS AND THE MOTOR. If a conventional powerboat's engine quits when you are away from land, or on a remote part of a lake, you are stuck there until outside help arrives. In many cases, attempts to start the engine drain the batteries so even radio communication becomes impossible. With the 26, simply raise the sails, and head for home. There are calms now and then, but there will usually be enough wind to get you on your way.
The MacGregor 70 may sail faster, but the 26 can nearly double its speed under power. Here you see the two boats going full throttle. The 70 is doing about 13 mph (very fast for a sailboat), and the 26 is doing over 23. The 26 is burning a lot less fuel.

Even if you are only interested in sail, you might consider this. Many areas have those wonderful sailing spots that are just out of reach! Here in Southern California a favorite spot is Catalina, an island about 25 miles off the coast. Getting there and back has always taken most of a weekend. You can be sure that sailors will use the dual nature of the 26 to shorten the distance. After a short, fast commute across the channel in their power cruiser, they can spend the weekend sailing from cove to cove and anchoring for the night. Maybe they will even stay Sunday night and speed back at dawn on Monday. You can't do that in a conventional sailboat. If you have a favored place that is just out of reach for a conventional sailboat, consider the 26.
This is the cruising spinnaker. The sail is easy to fly and colorful, and adds an amazing amount of speed when sailing downwind. It is flown and controlled just like a jib or genoa. No spinnaker pole or extra hardware is required to use this sail.

This is the very large racing spinnaker. It flies from an easily removable 6’ bow sprit. This sail is huge, and offers a lot more downwind speed than the conventional cruising spinnaker.
We drilled a hole in the bottom of the boat and let it fill. The boat has built-in solid foam flotation to keep it afloat in the event of damage. It won’t sail well when fully flooded, and it will be unstable, but it beats swimming. Most competing boats do not offer this essential safety protection, and their heavy keels can pull them straight to the bottom. Don’t get a boat without solid flotation!

The relatively flat bottom required for high speed powering creates a very stable sailboat. This photo shows 180 pounds on the rail with the water ballast tank empty. Other boats would show some serious tipping,
The 26 is self righting with the water ballast tank filled. This means that the boat will return to an upright position after being pulled over on its side with the sails in place. It takes 130 pounds at the masthead to hold it down as shown in this photo. When released, the boat snapped back to an upright position in less than one second. We do not consider the boat to be self righting with an empty tank. A ballasted sailboat is very much like the inflatable toy with a weight in the bottom that kids use as punching bags. The weight makes the toy return to vertical after it is poked. Notice that the hatch openings are well above the waterline, so water is not entering into the cabin. (When the water is rough, it is best to keep the hatch closed to prevent water from getting into the cabin if the boat takes a severe knockdown.)

The roller furler allows the size of the jib to be controlled from the safety of the cockpit. In this photo, the jib has been rolled in to about 1/2 of its normal size, and the mainsail has been reduced by 40%. This is essential for sailing in high winds, and great for learning to sail in normal winds. When the wind blows hard, the boat will sail faster with reduced sail area.
SAFETY

For really lazy sailing or for sailing in high winds, you can use the mainsail alone. You lose some speed, but the boat will handle very well. The mainsail has a set of reef points that will reduce its area by forty percent. This is essential for sailing in high winds, and great for learning to sail in normal winds. In really heavy winds, the boat will actually sail faster with a reefed mainsail. Reefing is quick and simple. The rotating mast makes the mainsail far more effective than the mainsail on a conventional rig.

The cockpit is self bailing. The cockpit floor is above the water level, and any water that comes into the cockpit simply drains out through the open transom. This is both a convenience and a big safety factor. (A swamped boat is no joy, and having to bail out a cockpit full of rain water is no fun either.)

The steering seat hinges up and out of the way to allow for easy boarding while the boat is in the water or on its trailer. This is a lot easier than climbing up and over the relatively high side in order to get on or off the boat. In the down position, it makes a comfortable steering seat for the captain, and helps keep the crew from falling off the rear end of the boat.

The 26 has hatches that can be secured to keep water out of the boat. The most seaworthy object is an empty bottle with the lid screwed on. We have come pretty close to this concept with the 26. Most small powerboats are open to the sea and totally unsuitable for offshore or rough water operation. Also, there are no thru hulls below the waterline that might allow water leaks into the interior of the boat.

The 26 has two engines, the sails and the motor. If a conventional powerboat's engine quits when you are away from land or in a remote part of a lake, you are stuck there until outside help arrives. In many cases, attempts to start the engine drain the batteries so even radio communication becomes impossible. With the 26, simply raise the sails, and head for home. There are calms now and then, but there will always be enough wind to get you on your way.

Other safety features include non skid deck surfaces, bow pulpit, cockpit rails and strong lifelines.
SPECIAL SAFETY INFORMATION 26M

SPECIAL SAFETY WARNINGS:
Boats, like any other form of transportation, have inherent risks. Attention to these warnings and instructions should help keep these risks to a minimum.

THE WATER BALLAST TANK SHOULD BE FULL WHEN EITHER POWERING OR SAILING.

IF THE BALLAST TANK IS NOT COMPLETELY FULL, THE BOAT IS NOT SELF RIGHTING. (IF YOU CHOOSE TO OPERATE THE BOAT WITH AN EMPTY TANK, SEE THE SECTION ON OPERATING THE BOAT WITHOUT WATER BALLAST.)

WHEN THE BALLAST TANK IS FULL:
- NO MORE THAN 6 PERSONS, 960 POUNDS.

WHEN THE BALLAST TANK IS EMPTY:
- NO MORE THAN 4 PERSON, OR 640 POUNDS.
- CREW WEIGHT CENTERED FROM SIDE TO SIDE.
- ALL SAILS REMOVED, ENGINE POWER ONLY.
- NO ONE ON THE CABIN TOP OR FORDECK.
- WAVES LESS THAN 1 FOOT.
- OPERATE WHERE WATER IS WARM AND RESCUE IS LIKELY.
- NEVER OPERATE THE BOAT WITH A PARTIALLY FILLED TANK.

WHEN POWERING OVER 6 MILES PER HOUR:
- RUDDERS AND DAGGERBOARD FULL UP.
- SAILS REMOVED.
- NO ONE ON THE CABIN TOP OR FORDECK.

ALWAYS, BEFORE OPERATING THE BOAT, CHECK TO CONFIRM THAT THE BALLAST TANK IS FULL. THE WATER LEVEL IN THE BALLAST TANK SHOULD BE NO MORE THAN 1” BELOW THE LEVEL OF THE FORWARD VENT HOLE. THEN MAKE SURE THAT THE FORWARD VENT PLUG AND THE TRANSOM VALVE ARE CLOSED AND SECURE.

THE FOLLOWING COMMENTS EXPLAIN WHY THE ABOVE RULES ARE NECESSARY.

STABILITY.
Unless the water ballast tank is completely full, with 1000 pounds of water ballast, the sailboat is not self-
righting. Without the water ballast, the boat may not return to an upright position if the boat is tipped more than 60 degrees, and can capsize like most non-ballasted sailboats.

The MacGregor is big, but relatively light, and excessive crew weight can overpower the basic stability of the boat. For this reason, we have placed the restrictions on crew capacity, shown in the preceding section.

OPERATING WITHOUT WATER BALLAST.
There may be times when you wish to operate the boat with an empty ballast tank. For example, when pulling a water skier, when trying to conserve fuel, when a faster ride is desired, or when you are in the process of filling the tank. Since only a few miles per hour are lost with a full tank, we recommend that most of your use of the boat be with a full tank. If the tank is empty, carry no more than 4 persons, or 640 pounds.

When operating with an empty ballast tank, keep the crew weight aft, low in the boat, and centered from side to side. Keep the crew in the cockpit, sitting down. The rear of the hull is relatively flat, and the nose area has a deep V to allow the boat to slide through waves with less slamming. If there is a lot of crew weight forward, the flat part of the hull bottom, which normally provides the stability, is raised higher out of the water, and is less effective in providing sideways stability. With the crew weight forward, the nose is depressed. The deep V nose shape does not contribute much to stability. When excess weight is at the front of the boat, the less stable nose area is carrying more of the weight of the boat and crew, the boat becomes far more easily tipped. Keep weight off of the forward V berth when under way, and avoid storing heavy items under the V berth. Crew members on the foredeck or cabin top are far more likely to get bounced out of the boat than those in the cockpit or inside the cabin. Anyone on the cabin top will have a natural tendency to grab the mast or mast support wires if the boat tips. That puts a heavy load high on the mast and tends to lever the boat over. Keep the weight low.

Obviously, it is best to have the crew positioned so the boat sits or rides level rather than leaning to one side or the other.

Do not have the sails up when the ballast tank is empty. They can produce a very strong sideways force and capsize the boat.

If the waves are larger than one foot, they can induce a lot of rolling motion and compromise stability. Keep the ballast tank full in such conditions.

If you are operating where the chance of outside rescue is slim, where conditions are rough, or where the water is cold and uninviting, fill the ballast tank. You will go slower, but you will be a lot safer. A full ballast tank gives greater safety.

Never sail or power with the ballast tank partially full (except for the few minutes that it takes to drain the tank when you are under power). With the water sloshing around in the tank, the center of gravity of the water changes rapidly, which can make the boat relatively unstable. Fill the ballast tank full and make sure the vent and valves are securely closed. Be extra cautious when the tank is filling or draining. You can drain the tank by powering the boat at 7 miles per hour. You will be able to see the water shooting out the valve in the transom. The water tank will empty in about 3 to 4 minutes.

If the valve or vent plug is open, even slightly, the motion of the boat can drain the ballast water from the tank or allow the boat to fill with water. If either the vent plug or the filling valve is open, ballast can be lost when the boat leans over. You might think that the tank is full, and that the boat is self righting, but you may be unpleasantly surprised by an unexpected capsize. If the transom valve is left open, or partially open, the forward motion of the boat can drain the tank.
Drain the tank in the smoothest water you can find. Avoid fast stops and starts, or turns, while the tank is draining. After you think the tank is empty, check the level with the dip tube just to make sure.

NEVER POWER THE BOAT OVER 6 MILES PER HOUR WITH THE SAILS UP. The forward speed of the boat can create enough wind to capsize the boat if the sails are up. The result could be instant capsize. If the ballast tank is empty, the boat will not be self righting.

NEVER POWER THE BOAT OVER 6 MILES PER HOUR WITH THE DAGGERBOARD OR RUDDERS DOWN. If you hit something at high speed with the daggerboard or rudders down, you will stop really fast, and may damage the board or rudders.

At high speed, the daggerboard and rudders create lots of sideways lift and can cause the boat to be unstable. This can roll the boat severely or possibly cause a capsize. Pull the daggerboard all the way up into the boat and secure it well. It is extremely important to check the control line frequently while powering to be sure the board has not come loose and lowered itself. This is particularly important when the boat is pounding into waves and things tend to get jigged loose. It is OK to leave the daggerboard down for low speeds (under 6 mph), where it will significantly enhance steering control.

BE EXTRA CAREFUL WHEN POWERING FAST.
Slow way down in waves or when powering with large crews. Waves come in all shapes and sizes, and can yield some nasty surprises. Wave induced problems, particularly with large crew loads, or crew weight high on the boat, can cause an upset.

Watch the water ahead of you. Hitting heavy stuff in the water at high speed can damage the boat or cause capsize. There is a lot of junk out there that floats just at the surface, and it is often barely visible. Bumping into something at sailing speeds is one thing, but at high speed, it can be nasty.

The boat will be less stable with the mast up than with the mast down. The mast is light, but it is up there, and, like any other weight aloft, reduces stability. When conditions are marginal, (high winds, waves, lots of crew weight, etc.), lower the mast and secure it to the pulpit and mast carrier.

DO NOT OPERATE THE BOAT WITH A LOT OF WATER IN THE BILGE (OUTSIDE OF THE BALLAST TANK). It can slosh around and seriously degrade stability. Always keep your bilges dry. Check the bilge frequently. There are a number of places where water can collect. Check them all.

The top of the daggerboard must never go more than 57” below the level of the deck. There is a line, with a knot and washer, that will keep the board from going too far down. Do not change the position of the knot, and make sure that it is in the same position if the line is replaced.

DO NOT ALLOW ANY PART OF THE BOAT, TRAILER, MAST OR RIGGING TO COME IN CONTACT WITH ANY SOURCE OF ELECTRICAL POWER. If your mast or any part of your boat or rigging comes in contact with a power line, you could be killed or injured. Don’t sail your boat into a power line. Don’t raise the mast into a power line. Don’t move your boat, on its trailer, into a power line. Masts, wires, or wet fiberglass are good conductors of electricity and can carry current directly to you. Look up and make sure you will be clear of sources of power before doing anything with your boat. Don’t remove the warning decal from your mast. It
SAFETY may help you remember to look and avoid a major calamity.

If you are caught in an electrical storm, don't touch anything that is metal, including the mast, shrouds, boom, lifelines, rudder, tiller or metal hardware. If possible, don't touch anything that is wet. Many experts recommend that a heavy gauge copper wire be securely fastened to one of the shrouds and allowed to hang in the water to carry off the electricity from a lightning strike.

MAKE SURE THAT YOU TOW YOUR BOAT WITH A LARGE ENOUGH CAR. Check with your car manufacturer or dealer to determine if the weight of the boat and trailer is within your car's towing capacity. Load your boat so the weight on the trailer hitch is between 250 and 300 pounds. If the weight is less, the trailer will tend to swerve dangerously from side to side. If the weight is more, an excessive load will be placed on the rear end of your car, and the trailer will be very difficult to hitch or unhitch. To protect your back when removing the trailer from the car, use the hitch jack or have an adult hang on the back of the boat to take some weight off the tongue.

NEVER OVERLOAD THE BOAT AND TRAILER. THE MAXIMUM WEIGHT IS 4200 POUNDS, AS SHOWN ON THE CERTIFICATION DECAL NEAR THE HITCH, ON THE LEFT (PORT) SIDE OF YOUR TRAILER. Remember, the maximum gross vehicle weight (G.V.W.R.) includes the weight of the trailer as well as the weight of the boat and all gear in the boat. You may not deduct the weight that is carried on the hitch of the car in arriving at the G.V.W.R. Check your state law to determine if there are any other weight or braking requirements that must be met.

MAKE SURE THE TRAILER WHEEL LUG NUTS ARE TIGHT BEFORE TRAILERING THE BOAT.

BEFORE TRAILERING THE BOAT, MAKE SURE THE NOSE OF THE BOAT IS TIED SECURELY TO THE TRAILER.

MAKE SURE THE OUTBOARD MOTOR AND MAST ARE ATTACHED FIRMLY TO THE BOAT WHEN THE BOAT IS BEING TRAILERED.

DO NOT TRAILER THE BOAT WITH ANY WATER IN THE BALLAST TANK. THE 1000 POUNDS OF WATER WILL SEVERELY OVERLOAD THE TRAILER AND THE CAR. Open the transom valve and vent, and drain the tank completely before trailering. Leave the valve open when trailering.

DON'T STORE FUEL CANS INSIDE THE BOAT. Gas fumes are explosive. Keep all gasoline containers out of the boat. Store fuel tanks in the open compartments next to the pedestal. BATTERIES ARE DANGEROUS. TREAT THEM CAUTIOUSLY. Batteries can produce explosive gas, corrosive acid and levels of electrical current high enough to cause burns. Always wear eye protection or shield your eyes when working near any battery and remove all metal rings and jewelry. Never expose a battery to open flames or sparks. Do not smoke near a battery. It could blow up. Do not allow battery acid to contact eyes, skin, fabrics or painted surfaces. Flush any contacted area with water immediately and thoroughly. Get medical help if eyes are affected. Do not charge the battery, adjust post connections or use booster cables without making sure the battery compartment is properly ventilated. When charging the battery, carefully follow the instructions on the charger. Keep the battery filled to the proper level with distilled water. Always keep vent caps tight. Do not allow metal tools or metal parts to contact the positive (+) terminal and the negative (-) terminal or any metal connected to these terminals.

DO NOT REMOVE ANY OF THE FOAM FLOTATION BLOCKS. Loss of any of the foam could seriously impair the ability of the boat to stay afloat if damaged.

IF THE CABIN OF THE BOAT IS ENTIRELY FILLED WITH WATER, AND THE BOAT IS DEPENDENT ON THE FOAM FLOTATION TO KEEP IT AFLOAT, IT WILL BE VERY UNSTABLE, AND MAY TURN UPSIDE DOWN.
WHEN RAISING AND LOWERING THE MAST, DON’T ALLOW ANYONE TO STAND WHERE THE MAST OR SUPPORT WIRES COULD FALL IF SOMETHING, OR SOMEONE, LETS GO.

BE EXCEEDINGLY CAREFUL WHEN SAILING IN HIGH WINDS. LEARN BASIC SEAMANSHIP. The Coast Guard Auxiliary Power Squadrons offer excellent courses at low cost. This is a worthwhile investment.

BE READY TO RELEASE SAIL CONTROL LINES (SHEETS) QUICKLY IF A GUST OF WIND CAUSES THE BOAT TO LEAN EXCESSIVELY. Lines should be free of kinks and knots so they will run freely through the pulleys when it is necessary to let the sails out quickly. Tie a knot in the extreme end of the line to keep it in the pulley. Letting the lines go is your best protection from a knockdown. For best performance under sail, and for safety, keep the boat from leaning (heeling) more than about 20 to 25 degrees.

ALWAYS SHUT OFF THE OUTBOARD MOTOR WHEN THE BOAT IS NEAR PEOPLE IN THE WATER. EVEN WITH LOW HORSEPOWER MOTORS, THE PROPELLER CAN DO SERIOUS DAMAGE. Don’t allow ropes to hang in the water (particularly the rudder ropes). They could tangle in the prop and stop or damage the motor.

SPECIAL SAFETY INFORMATION 26X

The following safety warnings are included as part of the Owner's Manual that is provided to the owner at the time the boat is delivered. Many apply to power and sailboats in general, and some apply to the unique design of the MacGregor 26.

IF THE BALLAST TANK IS NOT COMPLETELY FULL, THE BOAT CAN CAPSIZE.

Unless the water ballast tank is completely full, with 1400 pounds of water ballast, the sailboat is not self-righting. Without the water ballast, the boat may not return to an upright position if the boat is tipped more than 50 degrees, and will capsize like most non-ballasted sailboats. Always, before sailing the boat, remove the 1" diameter vent plug located under the rear end of the forward V berth, and make sure that the water level is no more than 3" below the hole from which the plug was removed. Then reinstall the plug. If you have to sail the boat without ballast, do not cleat down any sail control line. You must hand hold them and release them quickly if the boat tips excessively. Always make sure that the line is untangled and free to run out to its end without jamming.
NEVER POWER THE BOAT OVER 6 MILES PER HOUR WITH THE CENTERBOARD DOWN. At high speed, the centerboard creates lots of side-ways lift and can cause the boat to be unstable. It can roll the boat severely or possibly cause a capsize. Pull it all the way up into the boat and secure it well. It is extremely important to check the cable frequently while powering to be sure the board has not come loose and lowered itself. This is particularly important when the boat is pounding into waves and things tend to get jiggled loose. It is OK to leave the board down for low speeds (under 6 mph), where it will significantly enhance steering control.

DO NOT ALLOW ANY PART OF THE BOAT, TRAILER, MAST OR RIGGING TO COME IN CONTACT WITH ANY SOURCE OF ELECTRICAL POWER. If your mast or any part of your boat or rigging comes in contact with a power line, you could be killed or injured. Don't sail your boat into a power line. Don't step your mast into a power line. Don't move your boat, on its trailer, into a power line. Masts, wire shrouds, or wet fiberglass are good conductors of electricity and can carry current directly to you. Look up and make sure you will be clear of sources of power before doing anything with your boat. Don't remove the warning decal from your mast. It may help you remember to look and avoid a major calamity.

If you are caught in an electrical storm, don't touch anything that is metal, including the mast, shrouds, boom, lifelines, rudder, tiller or metal hardware. If possible, don't touch anything that is wet. Many experts recommend that a heavy gauge copper wire be securely fastened to one of the shrouds and allowed to hang in the water to carry off the electricity from a lightning strike.

MAKE SURE THAT YOU TOW YOUR BOAT WITH A LARGE ENOUGH CAR. Check with your car manufacturer or dealer to determine if the weight of the boat and trailer is within your car's towing capacity. Load your boat so the weight on the trailer hitch is between 250 and 280 pounds. If the weight is less, the trailer will tend to swerve dangerously from side to side. If the weight is more, an excessive load will be placed on the rear end of your car, and the trailer will be very difficult to hitch or unhitch. To protect your back when removing the trailer from the car, use the hitch jack or have an adult hang on the back of the boat to take some weight off the tongue.
NEVER OVERLOAD THE BOAT AND TRAILER. THE MAXIMUM WEIGHT IS 3500 POUNDS, AS SHOWN ON THE CERTIFICATION DECAL NEAR THE HITCH, ON THE LEFT (PORT) SIDE OF YOUR TRAILER. Remember, the maximum gross vehicle weight (G.V.W.R.) includes the weight of the trailer as well as the weight of the boat and all gear in the boat. You may not deduct the weight that is carried on the hitch of the car in arriving at the G.V. W.R. Check your state law to determine if there are any other weight or braking requirements that must be met.

MAKE SURE THE WHEEL LUG NUTS ARE TIGHT BEFORE TRAILERING THE BOAT.

BEFORE TRAILERING THE BOAT, MAKE SURE THE NOSE OF THE BOAT IS TIED SECURELY TO THE TRAILER.

MAKE SURE THE OUTBOARD MOTOR AND MAST ARE ATTACHED FIRMLY TO THE BOAT WHEN THE BOAT IS BEING TRAILERED.

DO NOT TRAILER THE BOAT WITH ANY WATER IN THE BALLAST TANK. THE 1400 POUNDS OF WATER WILL SEVERELY OVERLOAD THE TRAILER AND THE CAR. Open the transom valve and vent, and drain the tank completely before trailering. Leave the valve open when trailering.
DON'T STORE FUEL CANS INSIDE THE BOAT. Gas fumes are explosive. Keep all gasoline containers out of the boat. Store fuel tanks in the open compartments next to the steering pedestal.

BATTERIES ARE DANGEROUS. TREAT THEM CAUTIOUSLY. Batteries can produce explosive gas, corrosive acid and levels of electrical current high enough to cause burns. Always wear eye protection or shield your eyes when working near any battery and remove all metal rings and jewelry. Never expose a battery to open flames or sparks. Do not smoke near a battery. It could blow up. Do not allow battery acid to contact eyes, skin, fabrics or painted surfaces. Flush any contacted area with water immediately and thoroughly. Get medical help if eyes are affected. Do not charge the battery, adjust post connections or use booster cables without making sure the battery compartment is properly ventilated. When charging the battery, carefully follow the instructions on the charger. Keep the battery filled to the proper level with distilled water. Always keep vent caps tight. Do not allow metal tools or metal parts to contact the positive (+) terminal and the negative (-) terminal or any metal connected to these terminals.

DO NOT REMOVE ANY OF THE FOAM FLOTATION BLOCKS. Loss of any of the foam could seriously impair the ability of the boat to stay afloat if damaged.

IF THE CABIN OF THE BOAT IS ENTIRELY FILLED WITH WATER, AND THE BOAT IS DEPENDENT ON THE FOAM FLOTATION TO KEEP IT AFLOAT, IT WILL BE VERY UNSTABLE, AND MAY TURN UPSIDE DOWN.

WHEN RAISING AND LOWERING THE MAST, DON'T ALLOW ANYONE TO STAND WHERE THE MAST OR SUPPORT WIRES COULD FALL IF SOMETHING, OR SOMEONE, LETS GO.
BE EXCEEDINGLY CAREFUL WHEN SAILING IN HIGH WINDS. LEARN BASIC SEAMANSHIP. The Coast Guard Auxiliary Power Squadrons offer excellent courses at low cost. This is a worthwhile investment.

BE READY TO RELEASE SAIL CONTROL LINES (SHEETS) QUICKLY IF A GUST OF WIND CAUSES THE BOAT TO LEAN EXCESSIVELY. Lines should be free of kinks and knots so they will run freely through the pulleys when it is necessary to let the sails out quickly. Tie a knot in the extreme end of the line to keep it in the pulley. Letting the lines go is your best protection from a knockdown. For best performance and safety, keep the boat from leaning (heeling) more than about 20 to 25 degrees.

ALWAYS SHUT OFF THE OUTBOARD MOTOR WHEN THE BOAT IS NEAR PEOPLE IN THE WATER. EVEN WITH LOW HORSEPOWER MOTORS, THE PROPELLER CAN DO SERIOUS DAMAGE. Don't allow ropes to hang in the water (particularly the rudder ropes). They could tangle in the prop and stop or damage the motor.

EXCEPT WHEN FILLING OR EMPTYING THE WATER TANK, NEVER OPERATE THE BOAT WITHOUT SECURELY CLOSING THE TRANSOM VALVE AND THE VENT PLUG. If the valve or vent plug is open, even slightly, the motion of the boat can drain the ballast water from the tank or allow the boat to fill with water. If either the vent plug or the filling valve is open, ballast can be lost when the boat leans over under sail. You may think the tank is full, and that the boat is self righting, but you may be unpleasantly surprised by an unexpected capsize. If the transom valve is left open, the forward motion of the boat can drain the tank, resulting in capsize.
DON'T PULL THE BOAT OVER ON ITS SIDE USING THE MAIN HALYARD. If you have to tip the boat for maintenance or for any other reason, use the jib halyard. Using the main halyard will break the mast.

NEVER POWER THE BOAT OVER 6 MILES PER HOUR WITH THE SAILS UP. The forward speed of the boat can create enough wind to capsize the boat if the sails are up. The result could be instant capsize. If the water tank is empty, as it frequently is when powering, the boat will not be self righting.

DO NOT SAIL OR POWER THE BOAT WITH THE STEERING SEAT IN THE RAISED POSITION. If the motion of the boat or the wind causes the seat to fall into the lowered position, someone could be hurt. Make sure the seat is secured in the open position, with the snap cable to the lifeline, every time it is opened.

DO NOT OVERLOAD THE BOAT. Six adults is the limit. With more than this, the weight of the crew becomes very large in relation to the weight of the boat, and the stability of the boat might be compromised. It is important to use great care when carrying large crews to insure that the weight is properly distributed so as not to cause undue tipping or instability.

WHEN POWERING OVER 6 MPH, THE RUDDERS SHOULD BE IN THE FULL UP POSITION. They can generate enormous sideways loads when the boat is moving fast, and can contribute a lot of capsizing energy. With the rudders down at high speed, you may damage the rudders or the steering system.
DO NOT OPERATE THE BOAT WITH A LOT OF WATER IN THE BILGE (OUTSIDE OF THE BALLAST TANK). It can slosh around and seriously degrade stability. Always keep your bilges dry. Check the bilge frequently.

SPECIAL WARNINGS ON STABILITY. After sailing a ballasted sailboat, you get a bit spoiled and forget that unballasted boats, including the MacGregor 26 with an empty water ballast tank, can capsize and will not right themselves. This can happen under sail or under power. Here are a few hints for keeping the boat on its feet when the ballast tank is not full.

Keep crew and passengers off of the cabin top and foredeck. The 26 is big, but relatively light, and crew weight can be a very significant portion of the overall weight. Misplaced crew or excessive crew weight can overpower the basic stability of the boat. Be extremely cautious. Fill the ballast tank when there are more than four people on the boat. Be extra cautious when powering fast with more than 4 people on the boat.

Keep the crew weight aft, low in the boat, and centered from side to side. Keep the crew in the cockpit, sitting down. The rear of the hull is relatively flat, and the nose area has a deep V to allow the boat to slide through waves with less slamming. If there is a lot of crew weight forward, the flat part of the hull bottom, which normally provides the stability, is raised higher out of the water, and is less effective in providing sideways stability. With the crew weight forward, the nose is depressed. The deep V nose shape does not contribute much to stability. When excess weight is at the front of the boat, the less stable nose area is carrying more of the weight of the boat and crew, the boat becomes far more easily capsized. Keep weight off of the forward V berth when under way, and avoid storing heavy items under the V berth. Crew members on the foredeck or cabin top are far more likely to get bounced out of the boat than those in the cockpit or inside the cabin. Anyone on the cabin top will have a natural tendency to grab the mast or mast support wires if the boat tips. That puts a heavy load high on the mast and tends to lever the boat over. Keep the weight low. Obviously, it is best to have the crew positioned so the boat sits or rides level rather than leaning to one side or the other.
Slow way down in waves or when powering with large crews. Waves come in all shapes and sizes, and can yield some nasty surprises. Wave induced problems, particularly with large crew loads, or crew weight high on the boat, can cause an upset.

Watch the water ahead of you. Hitting heavy stuff in the water at high speed can damage the boat or cause capsize. There is a lot of junk out there that floats just at the surface, and it is often barely visible. Bumping into something at sailing speeds is one thing, but at high speed, it can be nasty.

The boat will be less stable with the mast up than with the mast down. The mast is light, but it is up there, and, like any other weight aloft, reduces stability. When conditions are marginal, (high winds, waves, lots of crew weight, etc.), lower the mast and secure it to the pulpit and mast carrier.

If you are operating where the chance of outside rescue is slim, where conditions are rough, or where the water is cold and uninviting, fill the ballast tank. You will go slower, but you will be a lot safer. A full ballast tank gives greater safety.

Never sail or power with the ballast tank partially full (except for the few minutes that it takes to drain the tank when you are under power). With the water sloshing around in the tank, the center of gravity of the water changes rapidly, which can make the boat relatively unstable. Fill the tank full and make sure the vent and valves are securely closed. Be extra cautious when the tank is filling or draining. Get the nose up and drain the tank in the smoothest water you can find. Avoid fast stops and starts, or turns, while the tank is draining. Be watchful that the water is not pouring out of the vent hole into the boat. This may happen if the nose gets too high. After you think the tank is empty, check the level with the dip tube just to make sure.
Do not install a lifting hydrofoil on the cavitation plate of the outboard motor. These are airfoil shaped wings, offered in various sizes and shapes. Their purpose is to provide lift at the stern of the boat. This raises the stern and forces the bow down, allowing the boat to get up on a plane more quickly. If they do keep the boat level when coming up on a plane, the ballast tank may not drain completely when the boat is underway. You may think you have an empty tank, but you may not.

These hydrofoils create another problem when the boat turns or leans sideways while underway. The lift that they provide goes straight up the centerline of the outboard motor, adding a strong force to promote further leaning or capsize.

These devices can exert a large amount of force; enough to snap off the cavitation plate that is cast as part of the drive shaft housing. Avoid them.
EASY TO SAIL

No boat is easier to sail. You can learn to sail in an afternoon. Read one of the widely available pamphlets on the basics of sailing. Pick a nice day with a light breeze. Take the boat to the water, launch it, fill the ballast tank and buzz around with the engine until you get the hang of it. It is no tougher than driving a car. Then set the mainsail and let the wind provide some of the power. Keep the engine running at idle to get you out of any tight places. An hour or so of this and you will have a pretty good idea of how it all works. When you are comfortable using the mainsail, raise the jib. An afternoon like this and you will be fairly accomplished.

To learn to sail is easy. To learn to make a boat sail to perfection can take forever (this is one of the great joys of the sport). The best argument for learning to sail is that once you start, you will stay with it for a lifetime. It is that much fun.

The boat comes with a 37 page owners guide, filled with photographs and instructions, for the initial rigging of the boat, and for every phase of its operation and maintenance. It includes a well illustrated section on how to sail. In addition, many dealers provide lessons when you purchase your boat.

For an excellent primer on how to sail, please click on HOW TO SAIL in the table of contents to the left.
Parts List for Web Site - MacGregor

ADHESIVE

<table>
<thead>
<tr>
<th>DRAWING DATE</th>
<th>OUR PART NUM</th>
<th>BUY UNIT</th>
<th>QTY PER BOAT</th>
<th>ANNUAL USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>451</td>
<td>BOX</td>
<td>0.3</td>
<td>150</td>
</tr>
</tbody>
</table>

ADHESIVE - HEADLINER MONARCH 396/Y 5 GAL BOX
<table>
<thead>
<tr>
<th>ALUMINUM EXTRUSION</th>
<th>DRAWING DATE</th>
<th>OUR PART NUM</th>
<th>BUY UNIT</th>
<th>QTY PER BOAT</th>
<th>ANNUAL USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALUM BOOM 10'6" CUSTOM EXTRUSION</td>
<td>12-dec-05</td>
<td>502</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
</tr>
<tr>
<td>ALUMINUM MAST 30' CUSTOM EXTRUSION</td>
<td>12-oct-06</td>
<td>504</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
</tr>
<tr>
<td>ALUM TUBING - 1 1/2" O.D. 1/8" WALL MAST LIFTING POLE 6'</td>
<td>510</td>
<td>EA</td>
<td>1.2</td>
<td>696</td>
<td></td>
</tr>
<tr>
<td>ALUM TUBING - 1" OD 1/8" WALL, SPREADERS 14'9"</td>
<td>508</td>
<td>EA</td>
<td>0.5</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>I BEAM 3.5 X 5, .320 FLANGE, .109 WEB MILL FINISH</td>
<td>501</td>
<td>EA</td>
<td>2.0</td>
<td>1,200</td>
<td></td>
</tr>
</tbody>
</table>
SAILING PERFORMANCE

POWER, WATERSKI

SPINNAKER

SAFETY

EASY TO SAIL

HOW TO SAIL

WHY THE LOW PRICE

COST TO OWN

COMPARE 26X

COMPARE HUNTER EDGE

COMPANY HISTORY

HALL OF FAME AWARD

WHY BUY A SAILBOAT

MAGAZINE REVIEWS

SUPPLIERS' CORNER

SHIPPING

EXPORTING

FACTORY GARAGE SALE

MACGREGOR 65

MACGREGOR 70 ANTHEM
<table>
<thead>
<tr>
<th>DRAWING DATE</th>
<th>OUR PART NUM</th>
<th>BUY UNIT</th>
<th>QTY PER BOAT</th>
<th>ANNUAL USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aluminum Standard

Alum Angle 1" x 1" x 1/16" Wall x 8 Feet 90 Deg

<table>
<thead>
<tr>
<th>Date</th>
<th>Num</th>
<th>Unit</th>
<th>Qty Per Boat</th>
<th>Annual Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500</td>
<td>FT</td>
<td>1.2</td>
<td>702</td>
</tr>
</tbody>
</table>
SAILING PERFORMANCE
POWER, WATERSKI
SPINNAKER
SAFETY
EASY TO SAIL
HOW TO SAIL
WHY THE LOW PRICE
COST TO OWN
COMPARE 26X
COMPARE HUNTER EDGE
COMPANY HISTORY
HALL OF FAME AWARD
WHY BUY A SAILBOAT
MAGAZINE REVIEWS
SUPPLIERS' CORNER
SHIPING
EXPORTING
FACTORY GARAGE SALE
MACGREGOR 65
MACGREGOR 70 ANTHEM
<table>
<thead>
<tr>
<th>BRASS</th>
<th>DRAWING DATE</th>
<th>OUR PART NUM</th>
<th>BUY UNIT</th>
<th>QTY PER BOAT</th>
<th>ANNUAL USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRASS SHEETING .032" X 12" X 96" 8956K16</td>
<td>204</td>
<td>SHEET</td>
<td>0.0</td>
<td>2</td>
<td>1,200</td>
</tr>
<tr>
<td>NUMBER PLATE - BRASS - FOR COAST GUARD</td>
<td>173</td>
<td>EA</td>
<td>2.0</td>
<td>1,200</td>
<td></td>
</tr>
</tbody>
</table>
SAILING PERFORMANCE
POWER, WATERSKI
SPINNAKER
SAFETY
EASY TO SAIL
HOW TO SAIL
WHY THE LOW PRICE
COST TO OWN
COMPARE 26X
COMPARE HUNTER EDGE
COMPANY HISTORY
HALL OF FAME AWARD
WHY BUY A SAILBOAT
MAGAZINE REVIEWS
SUPPLIERS' CORNER
SHIPPING
EXPORTING
FACTORY GARAGE SALE
MACGREGOR 65
MACGREGOR 70 ANTHEM
ELECTRICAL

BATTERY BOAT 12 VOLT 60 AMP HOURS BATTERY SYSTEMS

- Connector - Blue Butt Splice 422005
 - **Quantity:** 300
 - **Unit:** EA
 - **Buy:** 380
 - **QTY Per Boat:** 1.0
 - **Annual Usage:** 600

- Connector - Blue Spade Lug 492005
 - **Quantity:** 382
 - **Unit:** EA
 - **Buy:** 942
 - **QTY Per Boat:** 22.0
 - **Annual Usage:** 13,200

- Connector - Closed End 901215
 - **Quantity:** 942
 - **Unit:** EA
 - **Buy:** 142
 - **QTY Per Boat:** 1.0
 - **Annual Usage:** 600

- Connector - Deck Plug Perko 1190
 - **Quantity:** 384
 - **Unit:** EA
 - **Buy:** 736
 - **QTY Per Boat:** 1.0
 - **Annual Usage:** 600

- Connector - Large Ring 452385
 - **Quantity:** 550
 - **Unit:** EA
 - **Buy:** 944
 - **QTY Per Boat:** 1.0
 - **Annual Usage:** 600

- Connector - Medium Ring 452565
 - **Quantity:** 386
 - **Unit:** EA
 - **Buy:** 384
 - **QTY Per Boat:** 7.0
 - **Annual Usage:** 4,200

- Connector - Small Ring 452105
 - **Quantity:** 550
 - **Unit:** EA
 - **Buy:** 142
 - **QTY Per Boat:** 1.0
 - **Annual Usage:** 600

- Connector - Trunk 51520-04
 - **Quantity:** 944
 - **Unit:** EA
 - **Buy:** 388
 - **QTY Per Boat:** 1.0
 - **Annual Usage:** 600

- Electrical Panel 3 Switch 422010-1
 - **Quantity:** 388
 - **Unit:** EA
 - **Buy:** 390
 - **QTY Per Boat:** 1.0
 - **Annual Usage:** 600

- Fuse Holder - Inline 79165
 - **Quantity:** 392
 - **Unit:** EA
 - **Buy:** 226
 - **QTY Per Boat:** 4.0
 - **Annual Usage:** 2,402

- Fuses 5 Amp 79807
 - **Quantity:** 522
 - **Unit:** EA
 - **Buy:** 220
 - **QTY Per Boat:** 1.0
 - **Annual Usage:** 600

- Light - Cabin 30-93-113 Bargman
 - **Quantity:** 232
 - **Unit:** EA
 - **Buy:** 394
 - **QTY Per Boat:** 1.0
 - **Annual Usage:** 600

- Light - Mast Hella 003562002
 - **Quantity:** 232
 - **Unit:** EA
 - **Buy:** 220
 - **QTY Per Boat:** 1.0
 - **Annual Usage:** 600

- Light Bow Hella 003562042
 - **Quantity:** 220
 - **Unit:** EA
 - **Buy:** 220
 - **QTY Per Boat:** 1.0
 - **Annual Usage:** 600

- Light - Stern Hella 003562012
 - **Quantity:** 394
 - **Unit:** FT
 - **Buy:** 395
 - **QTY Per Boat:** 248.0
 - **Annual Usage:** 148,800

- Wire 14/2 (Del City's 48248)
 - **Quantity:** 394
 - **Unit:** FT
 - **Buy:** 395
 - **QTY Per Boat:** 41.9
 - **Annual Usage:** 25,140

- Wire-16/2 82167
 - **Quantity:** 394
 - **Unit:** FT
 - **Buy:** 395
 - **QTY Per Boat:** 41.9
 - **Annual Usage:** 25,140
<table>
<thead>
<tr>
<th>FABRIC</th>
<th>DRAWING DATE</th>
<th>OUR PART NUM</th>
<th>BUY UNIT</th>
<th>QTY PER BOAT</th>
<th>ANNUAL USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPET - TRAILER MULTIPILE AM12 BLACK WITH LATEX BACK</td>
<td>16-Nov-05</td>
<td>700</td>
<td>YD</td>
<td>1.0</td>
<td>600</td>
</tr>
<tr>
<td>CARPET-INTERIOR-PLUSH BOOTH 55750</td>
<td></td>
<td>705</td>
<td>SQ YD</td>
<td>1.4</td>
<td>858</td>
</tr>
<tr>
<td>CORD - WELTING POLY CABLE - 1836061030 (7/32)</td>
<td></td>
<td>702</td>
<td>ROLL</td>
<td>0.1</td>
<td>60</td>
</tr>
<tr>
<td>FABRIC - BLOWING FIBER BF30X8X50</td>
<td></td>
<td>704</td>
<td>LBS</td>
<td>10.0</td>
<td>6,000</td>
</tr>
<tr>
<td>FABRIC - CAN'T COMPLAIN - CREAM</td>
<td></td>
<td>708</td>
<td>YDS</td>
<td>7.9</td>
<td>4,746</td>
</tr>
<tr>
<td>FABRIC - HEADLINER - GEOMETRIC (M38 SAND)</td>
<td></td>
<td>710</td>
<td>YDS</td>
<td>7.7</td>
<td>4,632</td>
</tr>
<tr>
<td>FABRIC - SUNBRELLA 60" BLACK 6008 100% ACRYLIC</td>
<td></td>
<td>716</td>
<td>YDS</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>FABRIC - UNDERSIDE VINYL - VENTURA MUSHROOM</td>
<td></td>
<td>712</td>
<td>YDS</td>
<td>5.7</td>
<td>3,402</td>
</tr>
<tr>
<td>FABRIC - VINYL VISIONS AMARETTO (VIS-2019)</td>
<td></td>
<td>714</td>
<td>YDS</td>
<td>20.2</td>
<td>12,107</td>
</tr>
<tr>
<td>DRAWING</td>
<td>OUR PART</td>
<td>BUY</td>
<td>QTY PER</td>
<td>ANNUAL USAGE</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>-------</td>
<td>---------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>DATE</td>
<td>NUM</td>
<td>UNIT</td>
<td>BOAT</td>
<td>USAGE</td>
<td></td>
</tr>
<tr>
<td>FASTENERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANODIZE SCREWS - BLACK, SERVICE MACREGOR TO PROVIDE</td>
<td>13</td>
<td>EA</td>
<td>48.0</td>
<td>28,800</td>
<td></td>
</tr>
<tr>
<td>BOLT 6-32 X 1 1/2" OVAL HEAD MACHINE SCREW - PHILLIPS</td>
<td>12</td>
<td>EA</td>
<td>12.0</td>
<td>7,200</td>
<td></td>
</tr>
<tr>
<td>BOLT 6-32 X 1" ROUND HEAD MACHINE SCREW PHILLIPS</td>
<td>11</td>
<td>EA</td>
<td>4.0</td>
<td>2,400</td>
<td></td>
</tr>
<tr>
<td>BOLT 8-32 X 3/4" PAN HEAD MACHINE SCREW - PHILLIPS</td>
<td>16</td>
<td>EA</td>
<td>4.0</td>
<td>2,400</td>
<td></td>
</tr>
<tr>
<td>BOLT 7/16" - 14 1/2" HEX CAP SCREW - ZINC PLATED STEEL -</td>
<td>912</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>BOLT 10-32 X 1/2" ROUND HEAD MACHINE SCREW PHILLIPS</td>
<td>18</td>
<td>EA</td>
<td>10.0</td>
<td>6,000</td>
<td></td>
</tr>
<tr>
<td>BOLT 10-32 X 1/2" FLAT HEAD MACHINE SCREW PHILLIPS</td>
<td>26</td>
<td>EA</td>
<td>18.0</td>
<td>10,800</td>
<td></td>
</tr>
<tr>
<td>BOLT 10-32 X 1" ROUND HEAD MACHINE SCREW PHILLIPS</td>
<td>28</td>
<td>EA</td>
<td>20.0</td>
<td>12,000</td>
<td></td>
</tr>
<tr>
<td>BOLT 10-32 X 1" FLAT HEAD MACHINE SCREW PHILLIPS STAINLESS</td>
<td>24</td>
<td>EA</td>
<td>114.0</td>
<td>68,400</td>
<td></td>
</tr>
<tr>
<td>BOLT 1/4" - 20 X 2" FLAT HEAD MACHINE SCREW-SLOTTED PLAIN STAINLESS</td>
<td>905</td>
<td>EA</td>
<td>160.0</td>
<td>96,600</td>
<td></td>
</tr>
<tr>
<td>BOLT 1/4-.20 X 4" HEX CAP SCREW STAINLESS STEEL</td>
<td>57</td>
<td>EA</td>
<td>1.2</td>
<td>696</td>
<td></td>
</tr>
<tr>
<td>BOLT 1/4-20 X 1" HEX CAP SCREW STAINLESS STEEL</td>
<td>35</td>
<td>EA</td>
<td>4.0</td>
<td>2,400</td>
<td></td>
</tr>
<tr>
<td>BOLT 1/4-20 X 1 1/4" ROUND HEAD MACHINE SCREW PHILLIPS</td>
<td>38</td>
<td>EA</td>
<td>25.0</td>
<td>15,000</td>
<td></td>
</tr>
<tr>
<td>BOLT 1/4-20 X 1 1/2" FLAT HEAD MACHINE SCREW PHILLIPS</td>
<td>40</td>
<td>EA</td>
<td>59.0</td>
<td>35,400</td>
<td></td>
</tr>
<tr>
<td>BOLT 1/4-20 X 1 1/2" HEX CAP SCREW STAINLESS STEEL WITH SLOTTED</td>
<td>42</td>
<td>EA</td>
<td>25.0</td>
<td>15,000</td>
<td></td>
</tr>
<tr>
<td>BOLT 1/4-20 X 1 3/4" PAN HEAD MACHINE SCREW PHILLIPS</td>
<td>45</td>
<td>EA</td>
<td>6.0</td>
<td>4,000</td>
<td></td>
</tr>
<tr>
<td>BOLT 1/4-20 X 1" FLAT HEAD MACHINE SCREW PHILLIPS</td>
<td>34</td>
<td>EA</td>
<td>7.0</td>
<td>4,200</td>
<td></td>
</tr>
<tr>
<td>BOLT 1/4-20 X 1" PAN HEAD MACHINE SCREW PHILLIPS STAINLESS</td>
<td>36</td>
<td>EA</td>
<td>34.0</td>
<td>20,400</td>
<td></td>
</tr>
<tr>
<td>BOLT 1/4-20 X 2" FLAT HEAD MACHINE SCREW PHILLIPS STAINLESS</td>
<td>46</td>
<td>EA</td>
<td>1.4</td>
<td>852</td>
<td></td>
</tr>
<tr>
<td>BOLT 1/4-20 X 2 1/4" HEX CAP SCREW STAINLESS STEEL</td>
<td>50</td>
<td>EA</td>
<td>4.3</td>
<td>2,592</td>
<td></td>
</tr>
<tr>
<td>BOLT 1/4-20 X 2 1/4" PAN HEAD MACHINE SCREW PHILLIPS</td>
<td>52</td>
<td>EA</td>
<td>4.0</td>
<td>2,400</td>
<td></td>
</tr>
<tr>
<td>BOLT 1/4-20 X 2 3/4" HEX CAP SCREW STAINLESS STEEL</td>
<td>54</td>
<td>EA</td>
<td>2.0</td>
<td>1,200</td>
<td></td>
</tr>
<tr>
<td>BOLT 1/4-20 X 2" HEX CAP SCREW STAINLESS STEEL WITH SLOTTED</td>
<td>48</td>
<td>EA</td>
<td>29.6</td>
<td>17,784</td>
<td></td>
</tr>
<tr>
<td>BOLT 3/8" X 1 1/2" LAG - PLAIN OR ZINC PLATED</td>
<td>906</td>
<td>EA</td>
<td>25.0</td>
<td>15,000</td>
<td></td>
</tr>
<tr>
<td>BOLT 3/8-16 X 1 1/2" HEX BOLT STAINLESS STEEL</td>
<td>62</td>
<td>EA</td>
<td>11.0</td>
<td>6,600</td>
<td></td>
</tr>
<tr>
<td>BOLT 3/8-16 X 1 1/4" HEX CAP SCREW STAINLESS STEEL</td>
<td>60</td>
<td>EA</td>
<td>14.2</td>
<td>8,526</td>
<td></td>
</tr>
<tr>
<td>BOLT 3/8-16 X 1 1/4" ROUND HEAD MACHINE SCREW SLOTTED</td>
<td>64</td>
<td>EA</td>
<td>11.0</td>
<td>6,600</td>
<td></td>
</tr>
<tr>
<td>BOLT 3/8-16 X 1 1/2" HEX CAP SCREW STAINLESS STEEL</td>
<td>58</td>
<td>EA</td>
<td>6.0</td>
<td>3,600</td>
<td></td>
</tr>
<tr>
<td>BOLT 3/8-16 X 2 1/2"" HEX CAP SCREW STAINLESS STEEL</td>
<td>68</td>
<td>EA</td>
<td>13.0</td>
<td>7,800</td>
<td></td>
</tr>
<tr>
<td>BOLT 3/8-16 X 2 1/4" HEX CAP SCREW STAINLESS STEEL</td>
<td>66</td>
<td>EA</td>
<td>4.0</td>
<td>2,400</td>
<td></td>
</tr>
<tr>
<td>BOLT 3/8-16 X 2" HEX CAP SCREW STAINLESS STEEL</td>
<td>65</td>
<td>EA</td>
<td>5.0</td>
<td>3,000</td>
<td></td>
</tr>
<tr>
<td>BOLT 3/8-16 X 3" HEX CAP SCREW STAINLESS STEEL</td>
<td>70</td>
<td>EA</td>
<td>2.0</td>
<td>1,200</td>
<td></td>
</tr>
<tr>
<td>BOLT 3/8-16 X 4" PAN HEAD MACHINE SCREW SLOTTED STAINLESS</td>
<td>73</td>
<td>EA</td>
<td>2.0</td>
<td>1,200</td>
<td></td>
</tr>
<tr>
<td>BOLT 3/8-16 X 4" HEX CAP SCREW STAINLESS STEEL</td>
<td>72</td>
<td>EA</td>
<td>10.2</td>
<td>6,096</td>
<td></td>
</tr>
<tr>
<td>BOLT 5/8" - 11 1 1/4" HEX CAP SCREW - PLAIN STEEL</td>
<td>910</td>
<td>EA</td>
<td>4.0</td>
<td>2,400</td>
<td></td>
</tr>
<tr>
<td>COTTER PIN 1/16" X 1" STAINLESS STEEL</td>
<td>143</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>NUT 6-32 NYLON INSERT LOCKNUT STAINLESS</td>
<td>2</td>
<td>EA</td>
<td>0.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>NUT 10-32 HEX NUTS STAINLESS STEEL</td>
<td>3</td>
<td>EA</td>
<td>170.0</td>
<td>102,00</td>
<td></td>
</tr>
<tr>
<td>NUT 10-32 LOCKNUTS-NYLON INSERT STAINLESS STEEL</td>
<td>4</td>
<td>EA</td>
<td>162.0</td>
<td>97,200</td>
<td></td>
</tr>
<tr>
<td>PARTS LIST FOR WEB SITE BY COMMODITY RR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUT 1/4"-20 NYLON INSERT LOCKNUTS STAINLESS STEEL</td>
<td>5</td>
<td>EA</td>
<td>190.8</td>
<td>114,49</td>
<td></td>
</tr>
<tr>
<td>NUT 5/8" - 11 NYLON INSERT LOCKNUT (PLAIN / ZINC STEEL)</td>
<td>900</td>
<td>EA</td>
<td>4.0</td>
<td>2,400</td>
<td></td>
</tr>
</tbody>
</table>

SAILING PERFORMANCE

POWER, WATERSKI

SPINNAKER

SAFETY

EASY TO SAIL

HOW TO SAIL

WHY THE LOW PRICE

COST TO OWN

COMPARE 26X

COMPARE HUNTER EDGE

COMPANY HISTORY

HALL OF FAME AWARD

WHY BUY A SAILBOAT

MAGAZINE REVIEWS

SUPPLIERS' CORNER

SHIPPING

EXPORTING

FACTORY GARAGE SALE

MACGREGOR 65

MACGREGOR 70 ANTHEM
<table>
<thead>
<tr>
<th>FIBERGLASS</th>
<th>DRAWING DATE</th>
<th>OUR PART NUM</th>
<th>BUY UNIT</th>
<th>QTY PER BOAT</th>
<th>ANNUAL USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIBERGLASS - 1/4" CHOPPED STRAND PPG3075</td>
<td>638</td>
<td>LBS</td>
<td>6.0</td>
<td>3,600</td>
<td></td>
</tr>
<tr>
<td>FIBERGLASS CLOTH - 10 OZ. 60" STYLE 1800 F16 VOLAN</td>
<td>616</td>
<td>YD</td>
<td>9.0</td>
<td>5,400</td>
<td></td>
</tr>
<tr>
<td>FIBERGLASS CLOTH - 6 OZ. 60" STYLE 3733 F16</td>
<td>620</td>
<td>YDS</td>
<td>50.0</td>
<td>30,000</td>
<td></td>
</tr>
<tr>
<td>FIBERGLASS MAT - 1 1/2 OZ. 60"</td>
<td>622</td>
<td>LBS</td>
<td>310.0</td>
<td>186,000</td>
<td></td>
</tr>
<tr>
<td>FIBERGLASS MAT - 1 OZ. 60"</td>
<td>626</td>
<td>LB</td>
<td>30.0</td>
<td>18,000</td>
<td></td>
</tr>
<tr>
<td>FIBERGLASS UNI ROVING 6" WIDE ROLL 24 OZ 0 DEG VEW260X60</td>
<td>630</td>
<td>LBS</td>
<td>14.0</td>
<td>8,400</td>
<td></td>
</tr>
<tr>
<td>FIBERGLASS WOVEN ROVING 24 OZ. 60"</td>
<td>634</td>
<td>LBS</td>
<td>200.0</td>
<td>120,000</td>
<td></td>
</tr>
<tr>
<td>FIBERGLASS-1/32" OWENS CORNING MILLED FIBERS</td>
<td>642</td>
<td>LBS</td>
<td>1.3</td>
<td>780</td>
<td></td>
</tr>
<tr>
<td>OUR PART</td>
<td>BUY</td>
<td>QTY PER</td>
<td>ANNUAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>---------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATE</td>
<td>NUM</td>
<td>UNIT</td>
<td>BOAT</td>
<td>USAGE</td>
<td></td>
</tr>
<tr>
<td>FOAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOAM - 1"X 48" X 96" AF1233</td>
<td>724</td>
<td>SHEET</td>
<td>1.3</td>
<td>780</td>
<td></td>
</tr>
<tr>
<td>FOAM - 3" X 74" X 84" 1826</td>
<td>734</td>
<td>SHEET</td>
<td>1.5</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>FOAM - 3"X 68" X 78" AF1826</td>
<td>718</td>
<td>SHEET</td>
<td>0.4</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>FOAM - 5" X 48" X 51" 1826</td>
<td>733</td>
<td>SHEET</td>
<td>0.3</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>FOAM - 5" X 50" X 88" 1826</td>
<td>730</td>
<td>SHEET</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>FOAM - 5"X 38" X 68" 1826</td>
<td>731</td>
<td>SHEET</td>
<td>0.3</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>FOAM BLOCK 3" X 48" X 96" 1 LB DENSITY FLOTATION</td>
<td>801</td>
<td>SHEET</td>
<td>0.2</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>FOAM BLOCK 6" x 12" x 12" 1 LB DENSITY POLYSTYRENE</td>
<td>455</td>
<td>EA</td>
<td>60.0</td>
<td>36,000</td>
<td></td>
</tr>
<tr>
<td>URETHANE FOAM FOR MAST 25FOAM2 KIT</td>
<td>684</td>
<td>EA</td>
<td>0.1</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>
Gel Coat

<table>
<thead>
<tr>
<th>Gel Coat Description</th>
<th>Drawing Date</th>
<th>Part Num</th>
<th>Buy Unit</th>
<th>QTY Per Boat</th>
<th>Annual Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gel Coat- Black 402302-038 Elite 37% VOC Max</td>
<td>650</td>
<td>LBS</td>
<td>54.0</td>
<td>32,400</td>
<td></td>
</tr>
<tr>
<td>Gel Coat-Arctic White 5797W90007 30% VOC Max</td>
<td>646</td>
<td>LBS</td>
<td>100.0</td>
<td>60,000</td>
<td></td>
</tr>
<tr>
<td>Gelcoat- Dark Blue 2303-201 Elite 37% VOC Max</td>
<td>660</td>
<td>LBS</td>
<td>14.1</td>
<td>8,460</td>
<td></td>
</tr>
<tr>
<td>Gelcoat- Tan 311-516 Advantage 37% VOC Max</td>
<td>664</td>
<td>LB</td>
<td>50.0</td>
<td>30,000</td>
<td></td>
</tr>
<tr>
<td>DRAWING DATE</td>
<td>OUR PART NUM</td>
<td>BUY UNIT</td>
<td>QTY PER BOAT</td>
<td>ANNUAL USAGE</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>----------</td>
<td>--------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>03-Nov-05</td>
<td>100</td>
<td>EA</td>
<td>6.0</td>
<td>3,600</td>
<td></td>
</tr>
<tr>
<td>03-Nov-05</td>
<td>360</td>
<td>EA</td>
<td>6.3</td>
<td>3,792</td>
<td></td>
</tr>
<tr>
<td>03-Nov-05</td>
<td>101</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>03-Nov-05</td>
<td>512</td>
<td>EA</td>
<td>2.0</td>
<td>1,200</td>
<td></td>
</tr>
<tr>
<td>03-Nov-05</td>
<td>114</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>03-Nov-05</td>
<td>115</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>03-Nov-05</td>
<td>118</td>
<td>EA</td>
<td>1.8</td>
<td>1,080</td>
<td></td>
</tr>
<tr>
<td>03-Nov-05</td>
<td>514</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>03-Nov-05</td>
<td>129</td>
<td>EA</td>
<td>4.0</td>
<td>2,400</td>
<td></td>
</tr>
<tr>
<td>01-Nov-05</td>
<td>148</td>
<td>EA</td>
<td>3.0</td>
<td>1,800</td>
<td></td>
</tr>
<tr>
<td>03-Nov-05</td>
<td>516</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>11-Nov-05</td>
<td>518</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>17-Nov-05</td>
<td>520</td>
<td>EA</td>
<td>1.0</td>
<td>601</td>
<td></td>
</tr>
<tr>
<td>17-Nov-05</td>
<td>151</td>
<td>EA</td>
<td>2.0</td>
<td>1,200</td>
<td></td>
</tr>
<tr>
<td>20-Oct-05</td>
<td>152</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>03-Nov-05</td>
<td>156</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>01-Nov-05</td>
<td>216</td>
<td>EA</td>
<td>0.7</td>
<td>426</td>
<td></td>
</tr>
<tr>
<td>12-Nov-05</td>
<td>465</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>01-Nov-05</td>
<td>160</td>
<td>EA</td>
<td>2.0</td>
<td>1,200</td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Item</td>
<td>Order Date</td>
<td>Quantity</td>
<td>Unit</td>
<td>Price</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>------------</td>
<td>----------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>SAILING PERFORMANCE</td>
<td>LIFELINE POST NO LOOPS</td>
<td>01-Nov-05</td>
<td>470</td>
<td>EA</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>LIFELINE POSTS WITH 1 LOOP</td>
<td>20-Oct-05</td>
<td>476</td>
<td>EA</td>
<td>2.0</td>
</tr>
<tr>
<td>POWER, WATERSKI</td>
<td>MAST BASE HINGE PLATE</td>
<td>01-Nov-05</td>
<td>163</td>
<td>EA</td>
<td>1.0</td>
</tr>
<tr>
<td>SPINNAKER</td>
<td>MAST BASE SIDE ANGLES</td>
<td>02-Nov-05</td>
<td>164</td>
<td>EA</td>
<td>2.0</td>
</tr>
<tr>
<td>SAFETY</td>
<td>MAST BOTTOM CAP</td>
<td>11-Nov-05</td>
<td>526</td>
<td>EA</td>
<td>1.0</td>
</tr>
<tr>
<td>EASY TO SAIL</td>
<td>MAST CRUTCH</td>
<td>04-Nov-05</td>
<td>552</td>
<td>EA</td>
<td>1.0</td>
</tr>
<tr>
<td>HOW TO SAIL</td>
<td>MAST CRUTCH SOCKET</td>
<td>03-Nov-05</td>
<td>553</td>
<td>EA</td>
<td>2.0</td>
</tr>
<tr>
<td>WHY THE LOW PRICE</td>
<td>MAST LIGHT BRACKET</td>
<td>2-Nov-05</td>
<td>528</td>
<td>EA</td>
<td>1.0</td>
</tr>
<tr>
<td>COST TO OWN</td>
<td>MOTOR PUSHBAR - INSIDE</td>
<td>04-Nov-05</td>
<td>171</td>
<td>EA</td>
<td>1.0</td>
</tr>
<tr>
<td>COMPARE 26X</td>
<td>MOTOR PUSHBAR STUD</td>
<td>03-Nov-05</td>
<td>170</td>
<td>EA</td>
<td>1.0</td>
</tr>
<tr>
<td>COMPARE HUNTER EDGE</td>
<td>PEDESTAL BASE</td>
<td>03-Nov-05</td>
<td>562</td>
<td>EA</td>
<td>1.0</td>
</tr>
<tr>
<td>COMPANY HISTORY</td>
<td>PULPIT</td>
<td>12-Nov-05</td>
<td>480</td>
<td>EA</td>
<td>1.0</td>
</tr>
<tr>
<td>HALL OF FAME AWARD</td>
<td>RUDDER ADJUSTER BOLT HOLDER</td>
<td>03-Nov-05</td>
<td>564</td>
<td>EA</td>
<td>2.0</td>
</tr>
<tr>
<td>WHY BUY A SAILBOAT</td>
<td>RUDDER BRACKET</td>
<td>03-Nov-05</td>
<td>180</td>
<td>EA</td>
<td>2.0</td>
</tr>
<tr>
<td>MAGAZINE REVIEWS</td>
<td>RUDDER GRIP</td>
<td>03-Nov-05</td>
<td>566</td>
<td>EA</td>
<td>2.0</td>
</tr>
<tr>
<td>SUPPLIERS’ CORNER</td>
<td>SPREADER MAST BRACKET</td>
<td>12-Nov-05</td>
<td>530</td>
<td>EA</td>
<td>1.0</td>
</tr>
<tr>
<td>SHIPPING</td>
<td>SPREADER SOCKET</td>
<td>03-Nov-05</td>
<td>532</td>
<td>EA</td>
<td>1.0</td>
</tr>
<tr>
<td>EXPORTING</td>
<td>SPREADER TIP BLACK ANODIZE</td>
<td>11-Nov-05</td>
<td>534</td>
<td>EA</td>
<td>2.0</td>
</tr>
<tr>
<td>FACTORY GARAGE SALE</td>
<td>STEERING CABLE DECK PLATE</td>
<td>11-Nov-05</td>
<td>185</td>
<td>EA</td>
<td>1.0</td>
</tr>
<tr>
<td>MACGREGOR 65</td>
<td>STEERING CABLE HOLDER</td>
<td>12-Nov-05</td>
<td>190</td>
<td>EA</td>
<td>1.0</td>
</tr>
<tr>
<td>MACGREGOR 70 ANTHEM</td>
<td>STEERING LINK</td>
<td>03-Nov-05</td>
<td>167</td>
<td>EA</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>STRAP - BATTERY</td>
<td>11-Nov-05</td>
<td>191</td>
<td>EA</td>
<td>1.0</td>
</tr>
<tr>
<td>Part Description</td>
<td>Date</td>
<td>Qty</td>
<td>Unit</td>
<td>Rate</td>
<td>Total</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>STRAP - MAST RAISING POLE</td>
<td>03-Nov-05</td>
<td>584</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
</tr>
<tr>
<td>STRAPS - MAST LOWER</td>
<td>11-Nov-05</td>
<td>536</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
</tr>
<tr>
<td>STRAPS-MAST UPPER</td>
<td>01-Nov-05</td>
<td>538</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
</tr>
<tr>
<td>SUNSHADE CAR - PORT SIDE</td>
<td>02-Nov-05</td>
<td>221</td>
<td>0.5</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>SUNSHADE CAR - STARBOARD</td>
<td>02-Nov-05</td>
<td>219</td>
<td>EA</td>
<td>0.2</td>
<td>120</td>
</tr>
</tbody>
</table>

First Previous Next Last
<table>
<thead>
<tr>
<th>DRAWING DATE</th>
<th>OUR PART NUM</th>
<th>BUY UNIT</th>
<th>QTY PER BOAT</th>
<th>ANNUAL USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>02-Nov-05</td>
<td>102</td>
<td>EA</td>
<td>2.0</td>
<td>1,200</td>
</tr>
<tr>
<td>02-Nov-05</td>
<td>130</td>
<td>EA</td>
<td>2.0</td>
<td>1,200</td>
</tr>
<tr>
<td>02-Nov-05</td>
<td>104</td>
<td>EA</td>
<td>1.5</td>
<td>924</td>
</tr>
<tr>
<td>02-Nov-05</td>
<td>106</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
</tr>
<tr>
<td>02-Nov-05</td>
<td>110</td>
<td>EA</td>
<td>1.5</td>
<td>924</td>
</tr>
<tr>
<td>02-Nov-05</td>
<td>112</td>
<td>EA</td>
<td>2.2</td>
<td>1,296</td>
</tr>
<tr>
<td>02-Nov-05</td>
<td>205</td>
<td>EA</td>
<td>3.2</td>
<td>1,932</td>
</tr>
<tr>
<td>02-Nov-05</td>
<td>136</td>
<td>EA</td>
<td>8.0</td>
<td>4,800</td>
</tr>
<tr>
<td>02-Nov-05</td>
<td>138</td>
<td>EA</td>
<td>2.0</td>
<td>1,200</td>
</tr>
<tr>
<td>12-Nov-05</td>
<td>140</td>
<td>EA</td>
<td>4.0</td>
<td>2,400</td>
</tr>
<tr>
<td>12-Nov-05</td>
<td>17</td>
<td>EA</td>
<td>12</td>
<td>7200</td>
</tr>
<tr>
<td>02-Nov-05</td>
<td>147</td>
<td>EA</td>
<td>4.3</td>
<td>2593</td>
</tr>
<tr>
<td>02-Nov-05</td>
<td>149</td>
<td>EA</td>
<td>5.0</td>
<td>3,000</td>
</tr>
<tr>
<td>3-Nov-05</td>
<td>151</td>
<td>EA</td>
<td>2.0</td>
<td>1200</td>
</tr>
<tr>
<td>402</td>
<td>EA</td>
<td>0.2</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>01-Nov-05</td>
<td>154</td>
<td>EA</td>
<td>2.0</td>
<td>1,200</td>
</tr>
<tr>
<td>01-Nov-05</td>
<td>155</td>
<td>EA</td>
<td>12.0</td>
<td>7,200</td>
</tr>
<tr>
<td>02-Nov-05</td>
<td>158</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
</tr>
<tr>
<td>02-Nov-05</td>
<td>157</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
</tr>
<tr>
<td>Category</td>
<td>Description</td>
<td>Date</td>
<td>Quantity</td>
<td>Unit</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>--------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>SAILING PERFORMANCE</td>
<td>LOCK - FOREDECK HATCH</td>
<td>02-Nov-05</td>
<td>162</td>
<td>EA</td>
</tr>
<tr>
<td></td>
<td>MAINSHEET TRAVELLER-WITH CAR AND 2 LINE HOLDERS</td>
<td>01-Nov-05</td>
<td>233</td>
<td>EA</td>
</tr>
<tr>
<td></td>
<td>PELICAN HOOK - FOR 1/8 WIRE</td>
<td>02-Nov-05</td>
<td>366</td>
<td>EA</td>
</tr>
<tr>
<td>SPINNAKER</td>
<td>PLUG - INSPECTION 1"</td>
<td>02-Nov-05</td>
<td>176</td>
<td>EA</td>
</tr>
<tr>
<td>SAFETY</td>
<td>PUMP - GALLEY</td>
<td>02-Nov-05</td>
<td>234</td>
<td>EA</td>
</tr>
<tr>
<td>EASY TO SAIL</td>
<td>SHACKLE - 1/4 - LOOSE PIN</td>
<td>02-Nov-05</td>
<td>182</td>
<td>EA</td>
</tr>
<tr>
<td>HOW TO SAIL</td>
<td>SHACKLE - 3/16" PIN</td>
<td>02-Nov-05</td>
<td>187</td>
<td>EA</td>
</tr>
<tr>
<td>WHY THE LOW PRICE</td>
<td>SHACKLE - 3/8 - LOOSE PIN</td>
<td>02-Nov-05</td>
<td>184</td>
<td>EA</td>
</tr>
<tr>
<td></td>
<td>SHACKLE - TWIST PIN</td>
<td>02-Nov-05</td>
<td>188</td>
<td>EA</td>
</tr>
<tr>
<td>COMPARE 26X</td>
<td>STOVE - ORIGO 2000CB</td>
<td></td>
<td>238</td>
<td>EA</td>
</tr>
<tr>
<td>COMPARE HUNTER EDGE</td>
<td>THRU HULL 3/4"</td>
<td>02-Nov-05</td>
<td>195</td>
<td>EA</td>
</tr>
<tr>
<td>COMPANY HISTORY</td>
<td>TRACK "T" 2 FEET GRAY ANODIZED</td>
<td>07-Dec-05</td>
<td>240</td>
<td>EA</td>
</tr>
<tr>
<td>HALL OF FAME AWARD</td>
<td>TURNBUCKLE - SINGLE JAW, L.H.W/CLEVIS PIN, RING DING</td>
<td>02-Nov-05</td>
<td>198</td>
<td>EA</td>
</tr>
<tr>
<td>WHY BUY A SAILBOAT</td>
<td>U BRACKET</td>
<td>02-Nov-05</td>
<td>540</td>
<td>EA</td>
</tr>
<tr>
<td>MAGAZINE REVIEWS</td>
<td>WINCH</td>
<td>02-Nov-05</td>
<td>329</td>
<td>EA</td>
</tr>
<tr>
<td>SUPPLIERS' CORNER</td>
<td>WINCH HANDLE</td>
<td>02-Nov-05</td>
<td>328</td>
<td>EA</td>
</tr>
<tr>
<td>SHIPPING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXPORTING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACTORY GARAGE SALE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MACGREGOR 65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MACGREGOR 70 ANTHEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRAWING DATE</td>
<td>OUR PART NUM</td>
<td>BUY UNIT</td>
<td>QTY PER BOAT</td>
<td>ANNUAL USAGE</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>----------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>120</td>
<td>EA</td>
<td>3.0</td>
<td>12,000</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>EA</td>
<td>3.0</td>
<td>12,000</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>EA</td>
<td>23.0</td>
<td>13,800</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>EA</td>
<td>23.0</td>
<td>13,800</td>
<td></td>
</tr>
<tr>
<td>361</td>
<td>EA</td>
<td>1.0</td>
<td>601</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>EA</td>
<td>12.0</td>
<td>12,000</td>
<td></td>
</tr>
<tr>
<td>930</td>
<td>EA</td>
<td>2.0</td>
<td>1,200</td>
<td></td>
</tr>
<tr>
<td>932</td>
<td>PKG</td>
<td>2.0</td>
<td>1,200</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>EA</td>
<td>2.0</td>
<td>1,200</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>EA</td>
<td>2.0</td>
<td>1,200</td>
<td></td>
</tr>
<tr>
<td>387</td>
<td>EA</td>
<td>2.0</td>
<td>1,200</td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>FT</td>
<td>7.0</td>
<td>4,200</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>EA</td>
<td>2.0</td>
<td>1,200</td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>554</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>749</td>
<td></td>
<td>0.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>750</td>
<td></td>
<td>0.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>751</td>
<td></td>
<td>0.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>EA</td>
<td>1.0</td>
<td>601</td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>PC</td>
<td>0.2</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>244</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>991</td>
<td>EA</td>
<td>1.2</td>
<td>696</td>
<td></td>
</tr>
<tr>
<td>HOSE</td>
<td>DRAWING DATE</td>
<td>OUR PART NUM</td>
<td>BUY UNIT</td>
<td>QTY PER BOAT</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>--------------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>HOSE 3/8" INSIDE DIAMETER CLEAR VINYL 150-0380</td>
<td></td>
<td>214</td>
<td>FT</td>
<td>3.3</td>
</tr>
<tr>
<td>HOSE- 3/4" FLEXIBLE UNIFLEX 141-0340</td>
<td></td>
<td>217</td>
<td>FT</td>
<td>18.1</td>
</tr>
<tr>
<td>HOSE 5/8" INSIDE DIAMETER CLEAR VINYL</td>
<td></td>
<td>213</td>
<td>FT</td>
<td>0.4</td>
</tr>
</tbody>
</table>
SAILING PERFORMANCE

POWER, WATERSKI

SPINNAKER

SAFETY

EASY TO SAIL

HOW TO SAIL

WHY THE LOW PRICE

COST TO OWN

COMPARE 26X

COMPARE HUNTER EDGE

COMPANY HISTORY

HALL OF FAME AWARD

WHY BUY A SAILBOAT

MAGAZINE REVIEWS

SUPPLIERS' CORNER

SHIPPING

EXPORTING

FACTORY GARAGE SALE

MACGREGOR 65

MACGREGOR 70 ANTHEM
THE MOST IMPORTANT THING YOU MUST KNOW IS THE DIRECTION FROM WHICH THE WIND IS BLOWING. Program someone to ask you, every 2 minutes "where is the wind coming from?" You must point to it instantly, and be right. Put a Windex wind vane at the top of the mast, and keep your eye on it. If you don't know wind direction, you will look sort of stupid when trying to use the wind as your engine. There are clues everywhere; flags, smoke, dust, moving clouds, ripples on the water, other sailboats, and blowing debris. Above all, you can feel the wind direction on your face. Turn toward the wind. When you are aimed straight at it, you will feel it evenly on both ears, cheeks, hair, etc. Be aware.

SAILING DOWNWIND. Sailing with the wind is easy. Just aim the boat and the wind will blow you along. A boat sailing downwind looks like this.
This is no more complex than letting a balloon blow with the wind. (Except that you can steer.) You can sail downwind, slowly, without sails. (This is good for docking.)

Just get the sails out there at right angles to the wind. You control the angle of the sails to the wind with the sheets (the lines that connect to the rear of the jib and to the rear of the boom). The wind pushes on the sails, and the boat moves. Notice the turbulence behind the sails, just like the turbulence behind a truck as it speeds along. If the wind gets on the wrong side of the mainsail, it can slam over fast and hard, just like the wind will slam a door if it gets on the wrong side. This is called jibing. Be careful. More on this later.

SAILING ACROSS THE WIND. This is a whole different act. Notice, in the next set of drawings and photos, that the wind is now flowing smoothly across the sails, much like the wind moves across the wing of an airliner.
Sailing across the wind

Basically, the sails are diverting wind from its original direction toward the rear of the boat. Every pound of wind that is deflected toward the rear of the boat gives a forward push to the boat. Actually, the wind gives a push both forward and sideways (making the boat lean). However, the rudder and the centerboard keep the boat from sliding sideways, so it squirts forward, much like a watermelon seed shoots out forward when you squeeze it between your fingers.

SAILING INTO THE WIND. This is just like sailing across the wind, except that the sails are pulled in closer to the centerline of the boat, and you are now trying to sail as close into the wind as you can. This is tougher to do, and the boat won’t go as fast as when sailing across the wind. The following drawing shows the boat sailing toward the wind. This is as close into wind as you are going to get.
Notice the smooth wind flow across the sails, and the lack of turbulence. Wind is being properly diverted toward the rear of the boat, and like the blast of air coming out of the rear of a jet, pushing the boat forward and sideways. More of the force is now sideways, so the boat will tend to lean more, but it will still squirt forward, since the centerboard is keeping it from going sideways.
You can't sail straight into the wind. The sails will flap like flags, divert no wind, and you will just sit there, frustrated, dead in the water. This is being "in irons".

Trying to sail, unsuccessfully, straight into the wind.

So how do you get to point A in the above drawing if you can't sail directly toward it. You zig zag, (tack) like this.
Zig zagging (tacking) into the wind

THE FIRST DAY OUT. Launch the boat on a nice day with a light breeze. There should be just enough wind to move the boat around. (You have to be moving if you expect the rudder to work.) Fill the ballast tank. Make sure the rudders and centerboard are all the way down. Start the engine. Power slowly out to the middle of a calm body of water, where there is nothing to bump into, point into the wind, and put up the mainsail. Keep the engine running slowly, moving the boat about 2 mph. With the engine running and moving the boat forward, try to duplicate what you see in the above diagrams. Sail with the wind, across the wind and as close into the wind as you can go. Blunder around like this for a while, trying to match the angle of the boom to the wind as you see in the diagrams. After a half hour or so of this, you will get a good feel of what works and what doesn’t. If you screw up, or the sails shove the boat in a direction that you don’t wish to go, overpower the sails with the engine. Use reverse if you have to stop. In a tug of war between the engine and the sails in moderate winds, the engine will win.

Then raise the jib. Remember that the jib control line is pulled in on the side of the boat away from the wind. The line going to the other side is left loose. As you zig zag into the wind (tacking), you will have to release the jib line (sheet) from one side and pull it in on the other. The mainsail control line (mainsheet) takes care of itself. You don’t have to reset it each time you turn through the direction from which the wind is blowing.

STOPPING THE BOAT. If you are sailing, with the engine off, you can always stop the boat by turning into the wind and letting go of the jib control line and the mainsail control line. When you do this, the wind pressure is off of the sails, the boat will coast a few more boat lengths and come to rest. This also is good for docking when the dock is upwind. A motor is better.

HOW DO YOU KNOW IF THE SAILS ARE SET AT THE PROPER ANGLE TO THE WIND. There are some simple tricks that are used by the experts. When sailing in the same direction as the wind (called “running”), just let the sails out until they are at right angles to the wind. You are trying to catch as much wind as possible. Unfortunately, the mainsail blocks the wind from hitting the jib, so the jib will just hang, unless you can hold it out on the opposite side of the mainsail, as shown below. This adds sail area, but it only works when the wind is coming from directly behind the boat.
Sailing downwind with the jib buried behind the mainsail
Sailing downwind with jib out

When sailing at right angles to the wind (called "reaching"), pull in the mainsail control line (mainsheet) and the jib control line (jibsheet) until the wind completely fills the sails.

If the sails are not pulled in far enough, the fabric near the leading edge will flutter and ripple. This is the result of the wind hitting the sail on the wrong side and forcing the fabric toward the upwind side. This fluttering (often called "luffing") is shown in the following drawing.
Sails not pulled in enough (Luffing)

Keep pulling the mainsheet in until the fluttering just disappears, and the sail forms a smooth curve from the mast to the rear edge. Unfortunately, the sail will not tell you if it is pulled in too far; it will still look smooth and full, but will not move the boat well. Let the mainsheet out until the fluttering and bubble reappear along the mast. Then pull the sail in until the fluttering and bubble just disappear. This is now the perfect sail setting. Because the wind is always changing, you have to keep making this test for top performance.

There is another neat trick to let you know when the mainsail is pulled in too far. Secure a 7" long piece of yarn near the rear end of every batten pocket. Use a large needle to push the yarn through the sail.
HOW TO SAIL

Mainsail streamer

Streamers curling. Not good

7" LONG YARN, KNOT ON OTHER SIDE OF SAIL

BATTEN POCKET

REAR EDGE OF MAINSAIL
Streamers straight. Good

If they curl, gently let out the mainsail until they stream out straight and not try to hide behind the sail. The yarns tell when the sail is in too tight (which really slows up the boat and causes it to lean over more), but they do nothing to tell you when the sail is let out too far.

Even if you point the boat straight into the wind and the sail is doing an impersonation of a flapping flag, the yarns will stream nicely to the rear. You have to watch for the fluttering and ballooning to appear at the front edge of the mainsail. Pull it in until the fluttering disappears. So, the fluttering tells you if it is out too far, and the yarns tell you if it is in too far.

Trimming the jib is just about the same as trimming the mainsail. The jib, however, comes with built in streamers (called "tell tales") to make it easy. The streamers are about 12" in from the front edge of the sail. There are 2 sets, evenly spaced up the sail.
When the sail is pulled in just right, all of the streamers, on both the upwind and downwind sides of the sail, will be flowing straight to the rear.

When the streamers on the downwind side are going around in circles and not flowing to the rear, the jib is pulled in too tight. The wind cannot make the sharp turn around the front edge of the sail, and the streamers are caught up in the resulting turbulence. Let out the sail.

If the streamers on the windward side of the sail are dancing around and not flowing to the rear, the sail is not pulled in tight enough. Always trim the jib first, then the mainsail, since the flow off the jib affects the mainsail trim.

You always have two ways to get the angle of the sails to the wind just exactly right. You can pull the ropes to change the sail angle, or you can keep ropes as they are and steer in a new direction. The latter is easier on the arms, but you may not get where you want to go, but you will be going a lot faster.

When you are sailing as close as possible into the wind, secure the sails and adjust the angle of the sails to the wind by steering the boat into or away from the wind.

When sailing across the wind or into the wind, try to sail a constant leaning (heeling) angle. If it leans to much, sail into the direction from which the wind is blowing (called "heading up"), relieving some pressure on the sails. If the boat starts to stand up straighter, steer away from the wind direction (called "heading down"). The wind will hit the sails at more of an angle and cause the boat to lean more, and you will get more power. This helps to keep the sails at the proper angle to the wind. A leaning (heeling) angle should look about like this when going into the wind in an 8 mph wind.
Proper leaning angle in 8 mph wind

APPARENT WIND. This is tricky, but important. The wind that the boat feels is actually two winds. The first is the wind that moves across the water, that creates the waves and makes flags stream downwind. (This is called the true wind). The second wind is the wind produced by the speed of the boat. If there is no true wind, and your outboard pushes the boat at 5 mph, you and the boat will feel a 5 mph wind coming right at the front of the boat. (This is called the apparent wind).

If there is a 10 mph true wind, and the boat is going straight into it at 5 mph, you and the boat will feel a 15 mph apparent wind from straight ahead.

If there is a 10 mph true wind, and the boat is going with the wind (downwind) 5 mph through the water, you and the boat will feel a 5 mph wind at your back.

If there is a 10 mph true wind, and you are powering at right angles to the wind at 5 mph, the situation is more complicated. The wind the boat feels will be a combination of the two winds; the true wind from the side and the wind created by the motor from straight ahead. The apparent wind will appear to come from about 60 degrees from the side of the boat. It takes trigonometry to calculate the exact apparent wind speed and direction. Looking at the wind vane is easier.
The sailboat has only a small brain, and only feels the apparent wind, and this is what it must sail in. The apparent wind will determine how the sails are to be trimmed, and how the masthead wind indicator will point. It is the wind you must use to sail. But the complexity gets worse. As the speed of the boat changes, and as the true wind speed gusts and eases, the apparent wind strength and direction will change, and you have to keep trimming the sails or altering course as the changes occur. You don’t have to, of course, you can just get it close enough to enjoy the ride. But if you want to sail like a superstar, you will have to keep tweaking and adjusting for perfect trim all the time. This wins races. (You can learn to sail quite well in a matter of hours. But it will take a lifetime to master all of the subtle little intricacies.)

Another complexity. As you pick up speed, the wind from the front of the boat increases, and the apparent wind will come more from the front of the boat. Actually, the apparent wind will now be stronger than the true wind, so you have more usable wind to sail in. With each new change in wind speed or boat speed, you will need a new sail trim.

When you watch the tell tales on the jib and the streamers at the rear of the mainsail, you will notice that the top ones don’t always flow in the same manner as the lower ones. This means that the sail is not at the same angle to the wind at various heights. Wind blows harder as you go higher, and there will be a different apparent wind (and wind angle) up there. (This is because the friction of the earth and water slows wind down at low levels.) You may see the upper mainsail streamers trying to hide behind the mainsail, and the lower ones flowing nicely to the rear. This means that the top of the sail is in too tight. The boom vang controls this. Loosen the vang, and watch the upper part of the sail sag outward away from the wind. Tighten the vang, and it pulls down on the boom and pulls in on the upper part of the sail. When the vang is set right, all the streamers will behave the same. Fortunately, sailcloth is a bit stretchy, and the top will usually sag off just about enough to match the angle change caused by stronger winds higher up.

The jib has no boom, therefore there is no vang. But you can use the position of the jib sheet pulley on the deck track to control twist. If you move the sliding pulley forward on the track, the top part of the sail will be pulled in tighter. Move it to the rear, and the top part sags off downwind. Move the jib pulley on the track so that all of the telltales flow the same. If the top one on the upwind side flutters before the bottom one, move the pulley forward. If the bottom one is the first to flutter, move the pulley to the rear.

When sailing upwind you can also tell how you are doing by watching the forward edge of the jib. As you point the boat up into the wind, the leading edges of the jib will start to flutter and collapse inward. Turn away from the wind until the fluttering at the front part of the sail stops and the sail appears full. Try to steer the boat so that the front of the jib is just on the edge of starting to flutter and collapse. You will notice that the tell tales start flopping around just as the sail starts to flutter in front of the tell tales. The tell tales and the fluttering are both giving you the same message.

The jib halyard must be very tight, or the sail will sag between the snaps on the forestay. This is a most common problem for beginners. The mainsail halyard should be tight, but not so tight as to create vertical
wrinkles at the leading edge of the sail, parallel the mast.

The outhaul, mainsail halyard and jib halyard should be tighter in heavy air to flatten the sails, an loosened in lighter wind. In general, you want a very flat sail in heavy wind, to kill off some of its power, and very full and baggy sail in light wind, when you need all the power you can get. The fuller the sail (baggier) the more the power.

There are light lines sewn into the rear edge of each sail. Adjust these lines just tight enough to keep the rear edge of the sail from fluttering. If you get the lines too tight, the rear edge of the sail will cup toward the wind and slow the boat up a small amount.

The time to reduce sail area is when you first think that it might be necessary. Even with less sail, the boat will be faster if the heeling angle can be kept below 25 degrees. Beyond that, performance goes all to hell.

The reefing sequence goes like this:

1. If you can’t keep the leaning angle below 25 degrees, flatten the mainsail with halyard and outhaul. Flatten the jib or genoa by tightening the halyard. Loosen the vang to allow the top of the mainsail to twist downwind and spill wind. Move the jib deck pulley to the rear of the track to let wind spill out of the top of the jib.

2. If you still can’t stand up straighter than 25 degrees, roll the genoa about 1/2 way in. If you don’t have roller furling, change from genoa to jib.

3. After that, put a reef in the main, and keep the partially rolled genoa or the full jib.

4. If it still leans too much, roll away more genoa, (or get rid of the jib) and keep the reef in the mainsail.

5. If that isn’t enough, consider pulling down the sails and powering home. Or pull down all of the sails and ride it out until the wind lets up. If you are sailing downwind, you can use just the jib or reefed genoa. (This doesn’t work well upwind.)

When sailing into the wind, try leading the genoa sheet between the upper shroud and the lower shroud. This will allow the boat to point 5 to 7 degrees closer into the wind.

When racing in heavy wind, have at least a 4 man crew. In light air, the fewer the better. Remember it is against the rules to throw crew members overboard to lighten the boat.
The boats bottom, rudders and centerboard must be clean and shiny. A few days of marine growth will slow the boat dramatically. Any bumps at all, even microscopic, will create turbulence and destroy the orderly flow of water across the surface, and really screw up performance.

Keep the boat moving. With the small centerboard, forward speed is essential to keep the board lifting the boat into the wind. No speed, no lift, and the boat will just slide sideways.

Be sure to get rid of all extra weight. Crew can be moved to the windward side to keep the boat level. Junk in the boat is hard to move, and it will just slow the boat down. Light weight is very important downwind. Going upwind, added weight can sometimes be helpful. Waves and chop tend to slow up a light boat, while a heavier boat can plunge right on through. Keep rudder motion to a minimum. Steering creates lift from side to side. Lift is always accompanied by drag. Keep the rudder angle steady.

When trimmed properly, the boat should want to head up into the wind when you let go of the wheel. When sailing into the wind, the front of the rudders should be turned about 5 degrees toward the upwind side of the boat.

When sailing with the wind, avoid sailing straight downwind. Point up into the wind about 20 degrees, until the jib is not smothered by the mainsail, and starts to work. If your destination is straight downwind, tack back and forth as shown below. The boat will go a lot faster, which will more than make up for the fact that you have to sail a bit farther.

This will also reduce the risk of accidentally jibing. When you do want to jibe, pull in the mainsheet until the boom is near the centerline of the boat, and gradually let it out on the other side. Don’t let it slam over hard. Keep the crew off the cabin top if there is risk of jibing. The boom can whack them.

When sailing, make sure the ballast tank is full. When under sail in heavy winds, keep the crew weight aft and to
the windward side. In light wind, keep the crew forward and positioned so the transom is almost out of the water and the boat heels about 5 to 10 degrees. This heeling reduces the amount of hull surface in contact with the water. In light wind, the surface area touching the water creates most of the drag. The more surface in contact with the water, the slower the boat will go. A 10 degree angle of heel reduces this area significantly.

It has been said that the art of seamanship is not getting yourself in a position where you need seamanship. Always be careful.

Roger MacGregor
WHY THE LOW PRICE FOR A MACGREGOR 26: ($22,900)

As you have probably noticed, the price for the MacGregor 26 is considerably less than the price of boats of comparable size. The reasons are many.

The design is simple and straightforward, the hallmark of sound engineering.

MacGregor is one of the largest, highest volume sailboat manufacturers in the world. These boats are built in one of the most modern and efficient plants in the industry. We have specialized in this market for over 25 years, and have built over 35,000 boats.

This volume production has many cost advantages. Overhead and development costs are spread over a large number of boats. We buy the same or better materials than other builders, but we buy for a lot less because of our higher volume. For example, we buy resin by the tank car, whereas most builders purchase by the barrel. Our prices can be 30% to 40% less for the same material. We, like most successful companies in aircraft, cars and virtually everything else, do our own design work. We know our manufacturing capabilities better than an outside designer. Many designers spend very little time in production plants, and tend to create boats that are extremely costly to build.

Our work force is highly specialized. Because of our volume, each worker can concentrate on one job and he soon becomes the best in the industry at that job. Unlike most sailboat builders, we make large investments in manufacturing engineering—the art of creating production systems that are labor saving and foolproof. We build jigs, fixtures and other tooling that allows the worker to do his job with a minimum of effort and a maximum of accuracy.

Every tidbit of knowledge permanently transferred to tooling or equipment lowers the requirement for high paid labor. The results are accuracy and low cost. Don't overlook the fact that water ballast is
Computers have helped us control cost. Advanced computer modeling is used in all phases of design work; to create the boat itself and to prepare patterns and precise shop drawings that spell out every detail of the boat and its production. We have created our own specialized software for production scheduling, purchasing, inventory control, cost control, payroll, and structural analysis.

Most of our competitors build many types of boats of varying sizes, and their skills are spread too widely, preventing them from really optimizing the design and production of any one model. We do no custom work. We build only the configuration shown in this brochure. Basically, we do just one thing, and we do it well.

Don't be taken in by the old adage "you get what you pay for". It is often the inefficient builder's rationalization for his higher prices. Be sure that "what you pay for" is not a builder's high overhead, excessive advertising expenditures, equipment that you do not want or need, unnecessarily complex designs, poor inventory control, lack of well engineered production tooling, or a wide range of other wasteful business or manufacturing practices. These are of no value to you, but their costs are invariably passed on to you in the form of higher prices.
MACGREGOR 26 OPERATING COST, MAINTENANCE AND STORAGE

OPERATING COSTS

The typical monthly payment on an installment loan for this boat is about $170. The following is a rough idea of the typical yearly cost of owning a MacGregor 26.

- Trailer license ---$49 (California)
- Boat registration ---$9 (California)
- Insurance ---zero to $180
- Ramp fees ---zero to $100
- Maintenance ---zero to not much

Other costs will include outboard motor maintenance and fuel. Sailing may even save you money by replacing a far more expensive leisure activity. Most homeowner's insurance policies cover boats under 26', with low horsepower engines. The 26 should qualify. This is a big savings.

MAINTENANCE

The MacGregor 26 is as maintenance free as a boat can be. The rigging is of anodized aluminum and stainless steel. The fiberglass hull and deck require only an occasional waxing. Woodwork means work for you, so there is no exposed wood to refinish.

Resale value on our boats has remained high in relation to the value of boats stored in the water. If an owner has to pay high dock fees and finds that he is using the boat less after a few seasons, he feels the pressure to sell it. Trailerable boats, on the other hand, don't have the big expense meter running. The result is that they come on the market a lot less frequently than more expensive "in-the-water" boats. Once the initial investment is covered, trailerable boats remain...
close to cost-free. Many of the owners have held on to them for decades. Many of the boats still look as good as the day they left the factory. For this reason they tend to hold their value. Unlike a car, they don't rust away to junk in seven or eight years. Fiberglass seems to have no age limit.

BOAT STORAGE

If you have the room you can keep the MacGregor 26 at home, on its trailer. where it is available for convenient loading, care and maintenance. Provisioning the boat at home can avoid the long trek from the parking lot to the slip (with a weekend's worth of stuff). If you can't keep the boat at home, there are many dry storage areas where the boat can be kept on its trailer, fully rigged. The fee, in comparison to a slip fee, is small. Of course, you can keep it at a dock or on a mooring like any other boat. If stored in the water, you will need a good coat of anti-fouling bottom paint to keep the bottom clean.

One person can easily move the boat and trailer around on level ground because of its light weight. The trailer has a nose wheel to make pushing it a lot less difficult.
In March of 2003, MacGregor introduced the all new MacGregor 26M, to replace the 26X that had been in production for 7 years. Approximately 5000 of the X had been produced before being replaced by the M. The new boat is substantially different from the old. The following is a summary of the changes.

APPEARANCE

Looks are subjective, but we are getting a lot of feedback that the new 26 is one of the best looking trailerable sailboats ever built. It has a more traditional shear line, and the dark blue hull is a knockout. It really stands out in a boat show or at a marina.

The dark blue hull is an option, and will cost extra. The white hull, with black stripes, just like the 26X, is standard.

The transom, with its smaller opening and rounded corners, makes a big improvement in the view from the rear. Much of the rudder system is inside the boat, offering less clutter on the transom. The good looks came at a fairly small price. The transom opening is smaller and not quite as easy to pass through.

The boat looks a lot longer, and the taller rig gives it a more traditional sailboat look.

The sliding hatch, rather than just sitting on the cabin top, contours to the deck. When it is open, there is no gap between the deck and the hatch leading edge.
A DEEPER V SHAPE IN THE BOTTOM OF THE HULL

The new hull has a deeper V bottom (15 degrees), rather than the flatter bottom of the older boat (8 degrees).

The purpose of the deep V shape is to give the boat a softer ride under power, with less slamming against choppy seas. It also provides a moderate reduction in wetted surface, which benefits the boat’s sailing ability.

The V bottom has softer corners at the transom, and, at typical angles of heel, the corners dig in less and create a less turbulent wake.

The deeper V bottom keeps the boat from sliding around on the trailer, and gives better tracking under power.

The more pronounced centerline ridge provides a stiffer hull bottom.

PERFORMANCE

The new boat is significantly faster under both power and sail, and quite a bit faster under main alone. We compared two identically rigged and loaded boats, a 26X and the new 26M, both equipped with 50 hp Mercury Bigfoot engines.

At identical rpm settings, the new boat had an advantage of approximately 2 to 3 mph. This advantage held over a wide range of speeds. It held in both calm and choppy water. The big reason for the higher speed on the new boat is the lack of centerboard trunk drag. When we studied the videos of the speed runs, the turbulence from the 26X centerboard trunk was clearly visible, while the new boat offered a really clean water and spray pattern. The old centerboard trunk carried along about 100 lbs of water, the new trunk, with its tighter tolerances, carries virtually none. The 26X, boat, with its flatter bottom, was slowed each time it came down hard off of a wave.

Both boats showed an equal ability to get up on a plane.

Under sail, the differences were striking. In all conditions, the new boat
had a major speed advantage. The taller rig, reduction of the drag from the centerboard trunk, and the rotating mast really paid off. I believe that it will prove to be the fastest trailerable boat we have ever built.

The most striking difference in speed was when both boats were sailing with main alone. In typical conditions, when the 26x was sailing with main and jib, it was going about 5.7 mph. When the jib was furled, the speed dropped by 2 mph. With the new boat, when the jib was furled, the speed dropped by only 1 mph, with little change in the balance of the boat.

This means that an owner can go out for a sail and forget the jib, and still get good performance. In high winds, the main alone is an excellent choice. The new boat is less likely to get in irons when tacking with just the main, and if it does, it is far easier to recover. It balances almost as well with the main alone as it does with the main and jib.

Since the front third of the main is now working, and not screwed up by the turbulence of the mast, the thrust is now forward, rather than to the side. The result is more speed and less heeling angle. When the mast is properly rotated, the boat comes alive. When the mast is centered, the boat slows measurably.

A DAGGERBOARD HAS REPLACED THE CENTERBOARD

Better performance is the big reason for the change. Here are a lot more reasons.

1. LESS INTERFERENCE WITH THE INTERIOR

A centerboard trunk presents a 16" high problem from the mast almost back to the steps. Unfortunately, this ridge dominates the interior plan, and made it essential to bring the seating structure on one side out beyond the centerline. This forces a dinette type of configuration, which makes it more difficult to have a good conversational type seating for a bunch of crew members. It also reduced the interior floor space (and thus moving around space) by a significant margin. The daggerboard trunk, which is partially hidden by the galley, eliminated these problems.
2. IMPROVED STRUCTURE

The daggerboard trunk takes the full downward thrust of the mast to the keel of the boat.

The daggerboard requires a much smaller opening in the hull, which helps reduce drag and keep structural weight down.

3. NO ELECTROLYSIS OR LEAKS

The daggerboard requires no metallic parts below the waterline. There are no holes in the hull to leak, or pins to wear.

4. EASIER MAINTENANCE

The retraction cable is less subject to wear, and it can be easily replaced. The board itself can be lifted out through the deck for cleaning, inspection or repair. Removal of a centerboard is a tougher job.

5. QUIETER AT AN ANCHORAGE.

Daggerboards are a lot quieter and subject to less wear when the boat is moored or at anchor.

6. THE BOAT CAN SAIL WELL TO WEATHER WITH THE BOARD PARTIALLY RETRACTED.

With a centerboard partially down, the center of pressure moves aft, and the boat gets a lee helm when sailed into the wind. With the daggerboard partially down, the fore and aft center of pressure does not change, and the boat continues to balance well. This helps when trying to sail the boat to windward in shallow water.

For reaching, the daggerboard can be partially retracted to kill off weather helm, in the same manner as the centerboard. When reaching, you do not
In March of 2003 need the full lifting power of the board, and the partially retracted board works fine.

The down side, of course, is that if you hit something, the boat will come to a stop, just like any other keel boat in the marina. At normal sailing speeds, there should be no problem. The board is strong, and the hull is stronger. Don’t, however, leave it down when powering fast.

RIG

The 26’s rotating mast is similar to the setup used on modern catamarans. We have developed a system (for which we are seeking a patent) that allows conventional spreaders, with upper and lower shrouds, and a mast that rotates to good airflow across the mainsail.

With a conventional non-rotating mast, the mast creates a serious amount of turbulence on the mainsail, making the first third of the sail virtually useless. The deep notch between the mainsail and the mast disturbs the laminar flow of air across the downwind side of the sail and causes the smooth air flow to separate from the sail and disintegrate into a vast field of turbulence. The drawings below show the difference.
In March of 2003

Since the first third of the mainsail is not working, the thrust created by the main is almost totally sideways, causing a lot of heeling and less forward thrust. (See the above drawing.)

With the rotating mast, the boat heels less and goes faster.

The mainsail can now be used as the only sail for comfortable effort-free day-sailing. When the wind kicks up, getting rid of the jib and keeping the mainsail retains really good performance, and makes sailing a lot easier.

The mast section is larger (fore and aft) and does not require a backstay. This reduces weight aloft, and reduces windage.

The rotating rig raises and lowers like a non-rotating rig, and requires no attention when sailing. As the boat tacks, the mast automatically adjusts itself to the proper angle without human intervention.

When raising the mast, there is no backstay to tangle up in the rudder system or outboard motor.

The mast is 2’ taller, giving a bit more mainsail area and a better looking rig.
In March of 2003

The mast is sealed with injected urethane foam, and acts as a powerful buoyancy chamber if the boat is knocked down. The 67 pounds of buoyancy provided by the mast is equivalent in righting power of adding 500 pounds of ballast in the bottom of the hull. This multiplier is the result of having the center of buoyancy of the mast a long way out from the center of buoyancy of the hull.

We have beefed up the chainplates, bow plate and all mast hardware, and the rig looks strong and efficient. The chainplates have a stainless deck plate welded to them. These plates bolt to the deck, reducing the chance of a leak.

A small tube will be cast into the mast flotation foam to allow the future passage of wires to the top of the mast.

IMPROVED RUDDERS

The rudders’ fore and aft adjustment allows precise tuning. It is possible to set the rudder rake to completely eliminate rudder load on the wheel. (However, a slight weather helm is better for upwind control.)

The rudders are larger than those on the X, and have a more efficient elliptical tip.

With the deeper V hull, the upwind rudder is less likely to be raised out of the water when the boat heels.

With the deeper V on the new boat, the transom corners don’t dig in as much when the boat is heeled over, and the wake is a lot cleaner. This means less drag.

With the new hull and rudder shapes, the boat has less tendency to round up into the wind when heeled far over.

STABILITY

To enhance stability at lower heel angles to make up for the V bottom, we have added a permanent ballast of 300 pounds inside of the water tank.
In March of 2003

The ballast is in a sealed container surrounding the daggerboard trunk. The ballast is bonded to both the hull and the trunk, giving the trunk a great deal more strength. The 300 pounds of permanent ballast replaces an equal amount of water ballast, so the removable water ballast amounts to 1150 lbs. Total ballast is still 1450 pounds.

The new boat is about 200 pounds heavier in its trailering condition.

STRENGTH

We have added an extra layer of fiberglass mat and roving to the underwater area of the hull. This adds about 120 pounds, and adds to both stiffness and stability.

The deck has more beams, between the liner and the deck, and feels stiffer under foot.

COCKPIT

The cockpit seats are about the same length as those of the 26X, and slightly wider. The seat area across the front of the cockpit (where the mainsheet traveler is located), gives more seating area, but reduces the footwell floor area. To make up for the loss of foot room, we have mounted the pedestal on a stainless steel column (4" in diameter). This replaces the large fiberglass box that went all the way to the floor, taking up a lot of foot space.

The footwell is narrower, to allow more room in the big berth underneath, and gives a better spacing to brace your feet against when the boat is heeled over.

The steering seat is similar to the one in the older boat, but is about 6" higher. This allows room for the outboard motor to be under the seat, rather than behind it, and puts the captain up higher with a better view over the cabin top.

The cockpit cushions are improved and more comfortable. The inside sofa seat back cushions can be used, when sailing, as cockpit seat back cushions.
The fuel tank lockers in the cockpit will take two tanks, (12 gallons each). The tanks are in a recess in the cockpit seats, with a hinged hatch covering the opening, much like the system in the MacGregor 19. Since the tank holders are recesses in the deck, and not bonded in compartments, there are no exposed raw edges in the deck

FAR MORE CABIN SPACE

By placing the outboard motor under the captain’s seat, instead of behind it, we were able to move the entire cockpit to the rear and add about 15" to the length of the cabin.

A MORE USABLE REAR BERTH

Improving the rear berth was a major design goal.

By moving the head forward, we were able to gain access to the rear berth from the starboard side. The head occupied the most usable part of the old boat’s interior, and is now a lot less obtrusive forward of the mast. (The down side of this is a slightly smaller head with 2" less headroom.)

By shortening the footwell in the cockpit, by running the seats across behind the cabin entry, we were able to provide much more room in the rear berth, and make it a lot easier to get into.

By narrowing the footwell, we were able to make the rear berth look enormous. When you are standing in cabin, you are looking clear back to the transom.

BETTER SEATING.

After a good sail, it is highly desirable to have a place where the crew can comfortably sit, preferably facing each other, with a good table between them to hold the drinks and goodies. On the 26x’s starboard side, the dinette and the head made this a bit more difficult.

On the 26X, the galley blocked seating for most of the port side of the boat. With this new sliding galley, 4 people can comfortably be seated on
In March of 2003 each side of the boat, and be in a position to have a good conversation. That many people in a small boat is a bit of a crowd, but it will work.

IMPROVED SEATS AND UPHOLSTERY

The main salon seats are more like comfortable sofas than the seats found in most sailboats. The seat cushions are 5" thick, and the seat backs are thick and comfortable (the seat back cushions can also be used in the cockpit). The upholstery is top grade vinyl that has the feel and look of soft leather. The V berth and rear berth cushions are covered with an attractive fabric.

The boat sleeps 6; 2 on the V berth (which is a bit small), 2 on the rear berth, and one each on the cabin seats. Again, this is way to many for a happy voyage, but it can be done.

UPHOLSTERED HULL SIDES

We have long been criticized for having rather Spartan, refrigerator like interiors. No more. The hull sides are upholstered in durable fabrics, providing a softer, warmer appearance. The fabric also does a lot to quiet the boat.

Replacing the hard liner with fabric sides knocked out a considerable amount of weight without any reduction in strength. This also lowered the center of gravity and added to stability.

MORE HEADROOM

Headroom is a full 6 feet under the closed sliding hatch, and 5’ 10" under the cabin near the galley. Headroom is also increased over the rear berth.

SMALLER CABIN ENTRY
In March of 2003

Raising the bottom edge of the cabin entry not only made the rear berth more accessible, but lessened the chance of flooding the cabin in the event the cockpit was filled with a severe following sea.

We also made the side decks wider, making it easier to get to the foredeck. The height of the toe rails on the cabin top have been increased.

MORE WINDOWS

The two rows of windows give a lot more light inside, and greatly improve visibility. (However, on the down side, the forward view is more restricted as a result of the forward head.) The windows are flush mounted, and thicker than on the 26X.

IMPROVED INTERIOR BULKHEADS AND CABINETRY

The galley and all doors give the look of varnished mahogany.

All doors, bulkheads, windows, galley faces and hatches are cut with a computer controlled router, and are accurate to within 5 thousands of an inch.

The interior is now better looking, better built and more plush than anything we have offered before, and better than anything offered by of our competitors.

The galley top and sink are produced by a rather exotic process that gives the look of Corion. You will really like this.

CARPET

We are using a much higher quality carpet, and it is nicely edged.

MIRRORED BULKHEAD

In order to accentuate the greatly increased size of the interior, we have
In March of 2003 covered the main bulkhead with a good quality mirror. The effect is striking, and gives the look of a much larger interior.

MAINSHEET TRAVELLER

By extending the seats across the cockpit underneath the cabin entry, we were able to put a really good mainsheet traveller on the boat without screwing up seating and other usage of the cockpit. The traveller is tucked neatly up against the cabin back, out of the way.

The mainsheet no longer hangs across the crew area when the mainsail is let out when running down wind.

The traveller gives better control of the shape of the mainsail, with less dependence on the vang.

ELECTRICAL SYSTEM

We have upgraded the electrical system, with better fittings and heavier wire. The deck liners have molded-in runs that allow dealers and owners to install wire to all areas where it might be needed for extra lights, instruments, etc.

The old boat had 2 interior lights, the new boat has 4. There is one over the front V berth, in the head, in the main cabin, and over the rear berth.

COLORS

We have always used white interiors, and the new boat is a big change. The liners are tan, as are the upholstered hull sides. The cushions are a medium tan, and the carpet is a darker brown. It looks great.

NEW MAST RAISING SYSTEM

The new mast raising system is shown in the brochure. We use a small
In March of 2003 a brake winch to raise and lower the mast, and a set of removable wire cables to keep the mast centered as it goes up and down.

The new system requires a lot less effort to raise and lower the mast, and tends to keep the mast centered when it is going up and down. It doesn’t use the halyard, and is not dependent on having the halyard properly cleated down.

The line going to the bow of the boat is a fixed length, and does not require guessing at the proper angle of the pole.

SELF TENDING JIB

We are working on a self tending jib option, that can be added to any new 26 at a later date. This will greatly simplify sail handling.

HEADSAILS ARE NOW OPTIONS

Since there are so many combinations of possible headsails, you have a choice between a working jib, genoa or the proposed new self tending working jib (which is slightly smaller than the working jib, because it cannot overlap the mast). In addition, each of these requires a choice of having snaps for hanking on to the forestay or with a luff tape for use with a furler.

You can pick the best combination for your type of sailing.

TRAILER IMPROVEMENTS

We have installed heavier axles, springs, wheel and tires to bring the trailering capacity to 4200 pounds. There is more fender clearance, better support for the hull, and more effective surge brakes.

We now have big stainless steel disc brakes, and an electronic system that ties into the car lights that automatically disables the surge brake system when backing up.

The deeper V hull helps keep the boat centered on the trailer when
bouncing down the road.

LIFELINES AND PULPITS

You will be pleased to know that we are now putting a pelican hook on the lifelines in order to make it easier to get in and out of the cockpit. The lifelines are now higher in the cockpit and conform to the new European standards. On the cabin top, the lifelines are wider spaced to give more walking room when going forward.

The pulpit is substantially longer, and gives more to grab on the foredeck.

ANCHOR HANDLING

An anchor roller is now standard, and the anchor locker is substantially larger to hold bigger anchors.

ENGINES

There is no change in the engine mounting system, or the type of engines that can be used.

We have, however, widened the engine well area to allow easier bolting of the engine to the transom. The transom is now flush, and a pad won’t be needed between the motor and the transom.

HIGH PERFORMANCE ASSYMETRICAL SPINNAKER

We are working on a very high performance, large spinnaker to be flown from a retracting pole extending about 5 feet forward from the bow. This should give really hot downwind performance. Present boats are not yet being delivered with this system, but it can easily be installed on any 26M in the future. The 26x cruising spinnaker can be used on the new boat, and is available as an option.
In March of 2003
COMPARISON BETWEEN THE MACGREGOR 26 AND THE HUNTER EDGE

November 20, 2008

(For information on how to get the best price for a sailboat, see the comments at the end of this comparison.)

<table>
<thead>
<tr>
<th></th>
<th>MACGREGOR 26M</th>
<th>HUNTER EDGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRICE: (Retail)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base price, standard boat</td>
<td>$21,500</td>
<td>$32,990</td>
</tr>
<tr>
<td>Surge Brakes</td>
<td>Option $584</td>
<td>Std</td>
</tr>
<tr>
<td>Working jib</td>
<td>Option $260</td>
<td>Std</td>
</tr>
<tr>
<td>Portable marine head</td>
<td>Option $98</td>
<td>Std</td>
</tr>
<tr>
<td>Retail price, comparably equipped boat</td>
<td>$22,432</td>
<td>$32,990</td>
</tr>
<tr>
<td>Trailer included</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Mainsail</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>Wheel steering</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

This is an option because many owners have no need for the surge brakes. We try to make the standard boat include only the equipment that most owners want.

We offer both a genoa a working jib. It is an option so that the owner can select the sail that he wants for his local wind conditions.

The price on line 1 has been adjusted for the items that Hunter has standard and that the MacGregor has as options.
<table>
<thead>
<tr>
<th>Feature</th>
<th>MacGregor 26</th>
<th>Hunter Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine (Evinrude MSRP price, does not include installation)</td>
<td>$7660 (60 hp Evinrude)</td>
<td>$8960 (75 hp Evinrude)</td>
</tr>
<tr>
<td>Roller furling</td>
<td>Option</td>
<td>Option</td>
</tr>
<tr>
<td>Boat weight, without engine</td>
<td>2625 lbs</td>
<td>4070 lbs</td>
</tr>
<tr>
<td>Engine weight</td>
<td>240 lbs</td>
<td>320 lbs</td>
</tr>
<tr>
<td>Boat weight with engine</td>
<td>2880 lbs</td>
<td>4390 lbs</td>
</tr>
<tr>
<td>Trailer weight</td>
<td>575 lbs</td>
<td>?</td>
</tr>
<tr>
<td>Total trailering weight with engine</td>
<td>3440 lbs</td>
<td>4920 LBS</td>
</tr>
</tbody>
</table>

- **Power, Waterski**: Most owners equip their boats with roller furling. Hunter's is far more expensive. Both work well.

- **Easiness to Sail**: We restrict the MacGregor to 60 horsepower because heavy engines on the transom hurt sailing performance and make trailering more difficult. The lighter the better.

- **Why the Low Price**: Hunter requires a much more robust tow vehicle. More difficult to tow and launch. Harder to brake. Requires a heavy tandem axle trailer. Even with the tandem axle, the Hunter requires a lot more tongue weight on car's hitch.

- **Cost to Own**: 5000 lbs is a magic number for towing boats. A very large percentage of tow vehicles are not rated for more than this. In addition to the boat, motor and trailer, there will be more. A lot more. Fuel, water, anchors, safety equipment, camping gear, food, tools, and clothing. There can be many hundreds of
With the Hunter Edge, there is no significant margin for carrying all this and remaining under 5000 lbs. With the MacGregor, there is a lot of margin between its weight and either the 5000 lb limit or its trailer capacity.

<table>
<thead>
<tr>
<th>Water ballast, removable</th>
<th>1200 lbs</th>
<th>1600 lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent ballast</td>
<td>300 lbs</td>
<td>170 (In centerboard)</td>
</tr>
<tr>
<td>Total ballast</td>
<td>1500 lbs</td>
<td>1770 lbs</td>
</tr>
<tr>
<td>Total Weight: Boat, engine and ballast</td>
<td>4380 lbs</td>
<td>6160 lbs</td>
</tr>
<tr>
<td>Ballast/displacement ratio</td>
<td>35%</td>
<td>29%</td>
</tr>
</tbody>
</table>

Permanent ballast gives better overall stability when the water tank is empty. Weight in centerboard gives a bit more stability, but makes it harder to raise and lower.

This is the percentage of total boat weight that is ballast. It is widely used as a measure of stability. A higher number tends to indicate greater stability.

The formula is as follows:

\[
\text{Ballast/displacement ratio} = \frac{\text{Total ballast weight}}{\text{Total boat weight}}
\]

Homeowner's liability insurance will often cover boats under 26' without a separate policy.
<table>
<thead>
<tr>
<th>Beam</th>
<th>7’ 10”</th>
<th>8’ 4”</th>
<th>In many areas, 8’ is the max towing limit without a permit. The Hunter Edge won’t fit in container. (Two MacGregors will fit in a 46’ container, reducing shipping costs by half. It is also possible to ship a MacGregor, by container, to a favorite vacation spot.) Container shipping can save you thousands of dollars in delivery and transportation costs, especially if you are a long way from the factory.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draft, board and rudders up</td>
<td>10”</td>
<td>18”</td>
<td></td>
</tr>
<tr>
<td>SPEED UNDER POWER</td>
<td></td>
<td></td>
<td>With a 70 hp engine, the MacGregor goes 24 mph. Factory recommends a 60 hp engine.</td>
</tr>
<tr>
<td>Max speed under power</td>
<td>21 mph (60 hp)</td>
<td>19.9 mph (75 hp)</td>
<td></td>
</tr>
<tr>
<td>FUEL USE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel flow at low speed:</td>
<td>.5 gallons at 6 mph</td>
<td>.77 gallons at 6.7 mph</td>
<td></td>
</tr>
<tr>
<td>Gallons per hour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel flow at cruise:</td>
<td>3.2 gallons at 16 mph</td>
<td>5.4 gallons at 15.9 mph</td>
<td></td>
</tr>
<tr>
<td>Gallons per hour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel flow at high speed:</td>
<td>6.0 gallons at 21 mph</td>
<td>7.4 gallons at 19.9 mph</td>
<td></td>
</tr>
<tr>
<td>Gallons per hour</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| MACGREGOR 26 | HUNTER EDGE |</p>
<table>
<thead>
<tr>
<th></th>
<th>MacGregor 26</th>
<th>Hunter Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILES PER GALLON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miles per gallon at low speed</td>
<td>11.8 mpg at 6 mph</td>
<td>8.7 mpg at 6.7 mph</td>
</tr>
<tr>
<td>Miles per gallon at cruise</td>
<td>4.8 mpg at 16 mph</td>
<td>2.9 mpg at 15.9 mph</td>
</tr>
<tr>
<td>Miles per gallon at full speed</td>
<td>3.5 mpg at 21 mph</td>
<td>2.7 mpg at 19.9 mph</td>
</tr>
<tr>
<td>FUEL CAPACITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel tank capacity</td>
<td>24 gallons</td>
<td>24 gallons</td>
</tr>
<tr>
<td>RANGE UNDER POWER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max range, low speed</td>
<td>283 miles at 6 mph</td>
<td>208 miles at 6.7 mph</td>
</tr>
<tr>
<td>Max range, cruise</td>
<td>115 miles at 16 mph</td>
<td>70 miles at 15.9 mph</td>
</tr>
<tr>
<td>Max range, full speed</td>
<td>84 miles at 21 mph</td>
<td>65 miles at 19.9 mph</td>
</tr>
<tr>
<td>TRAILERING, LAUNCHING AND RIGGING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td>MAC Gregor 26</td>
<td>Hunter Edge</td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Sits low on its trailer for easy ramp launching and trailering</td>
<td>Very low</td>
<td>Higher</td>
</tr>
<tr>
<td>Mast raising system with brake winch</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>System for bolting the mast in placed while trailering</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Sailing speed

<table>
<thead>
<tr>
<th></th>
<th>See note at right</th>
<th></th>
</tr>
</thead>
</table>

We have not raced the two boats under sail. With the lighter weight, taller rig, better sail adjustment hardware, easily driven hull, and rotating mast, the Macgregor 26 should be significantly faster. The fact that the boat goes so much faster with a smaller outboard proves that the Macgregor hull offers far less drag and will be faster when driven by sail. Hunter’s hull ridges and a large open centerboard cavity create extra drag.

Main and jib sail area

<table>
<thead>
<tr>
<th></th>
<th>300 sq ft</th>
<th>330 sq ft</th>
</tr>
</thead>
</table>

Larger sail area is essential for good light air performance.

Main and genoa sail area

<table>
<thead>
<tr>
<th></th>
<th>506 sq ft</th>
<th>No genoa available</th>
</tr>
</thead>
</table>

Steering system can easily be disconnected from the engine when sailing

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

When sailing, you don’t want to have to turn both the rudder and the engine. It makes steering a lot harder. When connected to the steering system while under sail, with the engine up, the engine tries to flop from side to side as the boat heels, putting serious pressure on the steering wheel.

Fully retracting and kick up rudders

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

Hunter rudders retract vertically, but not completely. When fully up, a significant area of the rudder remains exposed and subject to damage on impact. Up or down, the Hunter rudder will not kick up.
<table>
<thead>
<tr>
<th>Feature</th>
<th>Hunter Edge</th>
<th>MacGregor 26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twin rudders</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Hunter has only one rudder. If it is damaged, the boat cannot be sailed. The Macgregor 26 has 2 rudders. If one is damaged, the boat can still be sailed. On wide, relatively flat bottom boats such as the Hunter and the MacGregor, a single, centerline rudders can come out of the water if the boat heels over to an extreme angle, resulting in loss of control. With the twin rudders on the MacGregor 26, one rudder will always be fully buried in the water, and effective, even at extreme angles of heel.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centerboard or daggerboard retract fully into the hull for high speed powering or beaching</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>The Hunter Edge centerboard does not fully retract into the hull. It is true that the Hunter Edge centerboard will kick up if it hits something, however, the rudder, which will not kick up, will still be exposed, and subject to damage after the centerboard kicks up and out of the way. It seems to us odd to have the most sturdy fin (the centerboard) kick up, but not the most vulnerable fin (the rudder). A sailboat cannot be sailed without its rudder. The MacGregor daggerboard and trunk are sufficiently sturdy to resist damage in impact at normal sailing speeds. For safety, at higher powering speeds, on either the Hunter Edge or the MacGregor 26, nothing but the engine propeller should be below bottom of the boat.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td>MACGREGOR 26</td>
<td>HUNTER EDGE</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Small, low drag opening for the centerboard in hull</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Hunter Edge’s centerboard cavity is very large, creating significantly more drag.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mainsheet traveler</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Absolutely necessary for better control of the mainsail. Nearly all racing and cruising sailboats have mainsheet travelers, with good reason. For perfect sail shape in light airs, it is often necessary to have the traveler positioned to windward for optimum sail shape. The traveler, when positioned to leeward, serves as a vang to take the twist out of the mainsail.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mainsheet positioned so it won’t interfere with the crew.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>On the Hunter, the mainsheet is mounted on the pedestal near the center of the cockpit. When the mainsail is in tight for sailing into the wind, the system is ok. But when the boom is let out for reaching or running, the mainsheet drapes over the leeward cockpit seat and whoever sits there. When the boat is jibed or tacked, the mainsheet drags across the primary seat area, scooping of hats, sunglasses, or worse. The MacGregor 26 mainsheet is positioned fully forward of the crew area and will not interfere with or grab the crew. For entering and exiting the cabin, the mainsheet can be positioned off center and out of the way. When sailing, the traveler is rarely positioned on the centerline. It is easily reached by the helmsman.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td>MacGregor 26</td>
<td>Hunter Edge</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Jib fairlead tracks for better control of the jib shape</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Spinnaker</td>
<td>Yes (option)</td>
<td>Unknown</td>
</tr>
<tr>
<td>Rotating mast</td>
<td>Yes (std)</td>
<td>No</td>
</tr>
</tbody>
</table>

SAFETY
<table>
<thead>
<tr>
<th>Feature</th>
<th>MacGregor 26</th>
<th>Hunter Edge</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full solid foam flotation</td>
<td>Yes</td>
<td>?</td>
<td>Hunter’s literature says the boat has full foam flotation. Upon inspection, we were not able to find where the foam is located. Check with Hunter. Foam should be placed high up in the boat to improve stability if the boat is full of water. The MacGregor 26 has 29 cubic feet of solid foam flotation to support the boat, crew, engine, ballast and sailing and cruising gear when the boat is flooded. Being a heavier boat, the Hunter Edge should require more.</td>
</tr>
<tr>
<td>Fully beachable</td>
<td>Yes</td>
<td>No</td>
<td>When the Hunter is beached, it will sit on its exposed centerboard and rudder, which will be subject to damage. The MacGregor will sit squarely on it hull</td>
</tr>
<tr>
<td>Rudder and centerboard fully retract for high speed powering or beaching</td>
<td>Yes</td>
<td>No</td>
<td>Hunter Edge’s rudder and centerboard are subject to damage when powering at high speed or beaching. Hunter Edge’s centerboard and rudder do not fully retract.</td>
</tr>
<tr>
<td>Thoroughly proven design</td>
<td>Yes</td>
<td>No</td>
<td>There are 2400 26M’s out there sailing. Only a few of the Hunter Edge’s have been built. MacGregor 26’s have been proven through hundreds of thousands of hours sailing, powering and trailering.</td>
</tr>
<tr>
<td>Engine can be hand started</td>
<td>Yes</td>
<td>Very difficult</td>
<td>Big problem if the battery goes dead</td>
</tr>
</tbody>
</table>

INTERIOR
<table>
<thead>
<tr>
<th></th>
<th>MACGREGOR 26</th>
<th>HUNTER EDGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berths</td>
<td>All berths (6) parallel to the boat’s centerline</td>
<td>Rear berth side to side</td>
</tr>
<tr>
<td></td>
<td>Bunks arranged at right angles to the centerline are very uncomfortable when even moderately rolling at anchor, or when sailing.</td>
<td></td>
</tr>
<tr>
<td>Rear berth</td>
<td>Easily accessible</td>
<td>More difficult to access.</td>
</tr>
<tr>
<td>Galley</td>
<td>Movable</td>
<td>Fixed</td>
</tr>
<tr>
<td></td>
<td>The MacGregor 26 galley slides to the rear on rails (in 2 seconds) to allow more room for party time in the main cabin. The sink and storage are still reachable when stowed. The attractive galley and molded in sink are made of fiberglass, the same as the hull, The Hunter Edge galley has a very small countertop, with limited working area and no room for a serious stove.</td>
<td></td>
</tr>
<tr>
<td>Interior volume</td>
<td>Similar</td>
<td>Similar</td>
</tr>
<tr>
<td></td>
<td>Hunter Edge is slightly wider, with slightly less headroom. M26 interior goes clear to the transom. The rear end of the Hunter Edge’s interior is taken up by the very large rudder system, leaving less room for a fore and aft rear berth. The Hunter’s hull to deck joint trim rail is wider than the rail on the MacGregor 26, accounting for a significant amount of the difference in the boat’s width. But this adds nothing to the interior volume and comfort.</td>
<td></td>
</tr>
</tbody>
</table>
COMPARISON BETWEEN THE MACGREGOR 26 AND THE HUNTER EDGE

Oct 27 08

<table>
<thead>
<tr>
<th>Feature</th>
<th>MacGregor 26</th>
<th>Hunter Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centerboard trunk</td>
<td>Trunk is incorporated into the head bulkhead and front dinette seat and is less obtrusive</td>
<td>The Hunter Edge's big centerboard trunk and table dominate the interior, making it hard to move around in the boat.</td>
</tr>
<tr>
<td>Cabin seat back cushions</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Carpeted floor</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Cabin headroom</td>
<td>6'</td>
<td>5' 10"</td>
</tr>
<tr>
<td>Front window</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Cabin access</td>
<td>Large opening with conventional sliding hatch</td>
<td>Relatively small opening with folding hatch</td>
</tr>
<tr>
<td></td>
<td>The MacGregor has a large, sturdy sliding hatch. The Hunter Edge's hatch is smaller and folds up, blocking forward view. It also depends on a small rubber gasket to resist leaks. The Hunter Edge's hatch, when half open, is a head knocker. Again, check the marinas. Almost all sailboats have sliding cabin access hatches.</td>
<td></td>
</tr>
</tbody>
</table>

COCKPIT

<table>
<thead>
<tr>
<th>Feature</th>
<th>MacGregor 26</th>
<th>Hunter Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steering pedestal</td>
<td>Relatively small steering pedestal</td>
<td>Very large and tall pedestal, occupying a significantly large area of the cockpit</td>
</tr>
<tr>
<td>Skipper's position</td>
<td>Seated</td>
<td>Very high, semi standing</td>
</tr>
<tr>
<td></td>
<td>Both systems offer an excellent view in all directions.</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>MacGregor</td>
<td>Hunter</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>Protected rear end of cockpit</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Seats on lifeline posts</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

APPEARANCE

Looks are in the eye of the beholder. Compare the photos on the Hunter and MacGregor web sites. We are obviously biased, but we think that the MacGregor is a far better looking boat.

Hunter performance, weight and fuel use data based on Evinrude tests. (Test Bulletin # PE 626) See the Evinrude web site.

MacGregor data taken with Garmin 276 GPS and a Flowscan 500 digital fuel flow meter. Weights were certified and tests were performed by Bluewater Yachts.

COMMENTS ON SAILBOAT PRICING

Manufacturers that do not have a significant price advantage often make it difficult to find their prices for their boats and options. Prices are not shown on their web sites and they try to steer you to their dealers to get reliable quotes. In our opinion, all pricing should be clearly shown in their ads and web sites. Price is a big thing, and should be out there in the open.

Some builders offer “packages” of options. You may find it difficult to get the specific option that you want without taking a lot of stuff that you don’t want or need. It is an effective way of increasing their revenue of each boat. MacGregor prefers to price each item individually so you can order just exactly what you need. No more or no less.
To get the best and most reliable prices, start at the builder’s web site. Even if suggested retail prices are not published, use the manufacturers info to build the boat that you want.

(We do not hide our prices. Click here to see our price list.)

Even if the manufacture shows its prices, go to the nearest dealers and get the dealer's price for that exact boat. Prices will obviously vary between dealers, depending on their distance from the factory (transportation costs), their inventories and their desire to sell you a boat. The dealers may also provide some of the items you want, and that the manufacturer does not offer, such as navigation equipment, cruising gear, etc.
MacGregor Yacht Corporation began in the early 60's as a class project at the Stanford Graduate School of Business, while Roger MacGregor was earning an MBA degree. The company has always been the most innovative in the industry. We invented the retracting keel and started the trailerable sailboat market, the fastest growing segment of sailing. After MacGregor built tens of thousands of retracting keel sailboats, cars became smaller and lighter. Weight reduction became essential for safer and easier trailering. We then invented the water ballast system, that provides the safety of a true keelboat, with the light weight needed for trailering and high performance. The MacGregor designed water ballast system has been copied by other major builders, and has become the new standard for the trailerable sailboat industry. The light weight then allowed us to develop a high performance sailboat that can be driven...
at high speed by relatively low horsepower outboard motors. The culmination of all of this is the MacGregor 26.

Most major sailboat companies have had a shot at making trailerables, including such well known names as Islander, Columbia, Cal, O'day, Clipper, Coastal Recreation (Aquarius), Newport Boats, San Juan, Ericson, Bayliner, Reinell, Laguna, Olson, Schock and dozens of others. They are either gone completely, no longer attempt to compete in this market, or are building so few of this type of boat that they are no longer a significant factor. The trailerable cruiser is a small boat with the amenities of a big boat. To pack these amenities into a boat which is light enough to haul around, and to take the abuse of trailering, you really have to optimize. They were unable to do this, control costs, provide performance, or give customers what they wanted. Acquisition by large conglomerates sank several companies under layers of management. Many suffered from warrantee problems and others died off because they had so many types of boats in their line that they couldn't concentrate on building detailed, foolproof, low cost tooling and production systems for any one boat.

The result is that we have the best selling boat of this type in the world. We have built over 36,000 sailboats. In this competitive society, we would have been gone along time ago if our boats weren't right.

Sail Magazine recently recognized MacGregor as one of the most innovative of the sailboat builders over the last 3 decades, and as the builder that brought affordable sailing to thousands.
Hall of Fame Award

On January 20, 2000, the MacGregor 25 was one of two boats inducted into the Sail America Hall of Fame.

The award was presented at the Atlantic City Sail Expo.

Roger MacGregor with the MacGregor 25 model that will be displayed at the American Sailboat Hall of Fame Museum in Newport, Rhode Island.

Two boats each year are inducted into the Hall of Fame. The standard by which they are selected is shown below:

A boat that has earned lasting recognition by fostering new enjoyment and growth in the sport of sailing through excellent design.

Guided by this standard, Sail America has selected 18 boats for induction into the American Sailboat Hall of Fame since its founding in 1994. These Hall of Fame boats are true American classics, exemplars of the extraordinary skill and ingenuity of American boat builders. They range in size from 8 to 41 feet. Several date to the dawn of the fiberglass era and are considered collector's items, others are still in production, selling briskly. All have profoundly influenced the sport of sailing. By
their sheer excellence, they have made sailing better.

Selections for the Hall of Fame were made by a committee of magazine editors comprised of Bill Schanen, Sailing Magazine chairman; John Burnham, Sailing World Magazine and Patience Wales, Sail Magazine. Half-models of Hall of Fame boats are displayed each year at Sail Expo, and are on permanent display at the Museum of Yachting in Newport, Rhode Island.

The MacGregor 25

Henry Ford is often credited with bringing the automobile to the common man. Roger MacGregor, a one-time Ford employee, may well be credited with doing the same thing for the cruising sailboat. The popular MacGregor 25 was the flagship of his line for 14 years. With a swinging keel - a MacGregor invention - that made transporting and launching the boat a snap, and a price that hovered around the cost of a new car, the MacGregor 25 opened up coastal and inland sailing to countless thousands of people who might have otherwise remained ashore.

MacGregor started the company while earning his MBA at Stanford Business School. He and his wife, MaryLou, later ran the company out of their garage while Roger was working for Ford. Soon, though, the business outgrew the garage, and MacGregor quit his job, bought some property in Costa Mesa, and started building a plant that now encompasses 65,000 square feet. While the company now has over 100 employees, and sells its boats in 15 countries, the business is still family run. It’s one of the U.S.’s most successful boatbuilding outfits.

The 25 wasn’t the first boat MacGregor build—that honor belongs to the Venture 21. But it’s the one that seemed to do the best job serving the growing pocket cruiser market. It had enough space to house a couple or small family for a weekend, yet could easily be towed behind most cars.

Before the 25 debuted, many boat designers didn’t think it was feasible to squeeze a serviceable cruising interior into a boat of that size. While its functional lines, lightweight design and minimal use of wood both above and below decks may not have won the approval of some sailing purists when it debuted in 1973, the flexible, go-anywhere boat proved to be extremely successful. It was easy to rig—one person could step the mast and sail and was especially popular with first-time sailboat owners.

When the 25’s production run ended in 1987, 7,000 had been sold.

-Stuart Streuli, Sailing World
Note: The other boat inducted into the Hall of Fame was the Freedom 40.
There is no nicer or lower cost way to spend time than sailing. There are few things in the world that are as quiet, graceful and downright fun. You will find no better way to spend an hour, a weekend or an entire vacation. From the vantage point of a sailboat, the normal cares of the world seem small. A sailboat is versatile. For a couple, put on the music, fill the ice chest and you have romance. It is also a wonderful sport for a family. Most of the families that own these boats have children, and the kids seem to love it. If you want a thrill, few sports can equal heavy weather sailboat racing.

There is also much to be said for quietly sailing off all by yourself. Sailing is one of the few pastimes left where you can get away from the crowds. There are thousands of quiet coves, rivers, islands, anchorages and secluded waterways. Many of the best vacation places are at the edge of water. Unfortunately, the land side is packed with humanity. The water side has barely been touched. With a boat as your own private island, you can enjoy all the beauty and
seclusion you want...and the fishing is usually good. If you like people, crowds and action, a sailboat can get you there too.

Tied up alongside a MacGregor 70
INDEX OF MAGAZINE REVIEWS:

- SAIL MAGAZINE REVIEW
- BAY AND DELTA MAGAZINE
- NEW ZEALAND TRADE A BOAT REVIEW
- BOB PERRY NAVAL ARCHITECT REVIEW FOR SAILING MAGAZINE
- BOAT OWNER MAGAZINE, MIDDLE EAST LUXURY YACHTS
- OFFSHORE MAGAZINE REVIEW
- BOATING NEW ZEALAND
- NOR’WESTING BOATING MAGAZINE 2006
- NOR’WESTING BOATING MAGAZINE 2004
- CRUISING HELMSMAN MAGAZINE
The MacGregor 26 is built in our factory in Southern California. We send them to our dealers throughout the world.

Dealers near our plant usually take delivery at our plant and tow them away using their own vehicles.

For more distant North American dealers, we load 2 MacGregor 26’s (on their own trailers) into a single 48' long standard shipping container. The containers are trucked to a nearby rail yard, loaded on a container train, and taken to a rail yard near our dealer. The containers are then unloaded from the train and trucked to the dealer. A loading dock is not necessary to unload the boat. A standard flat bed tow truck can be backed up to the container, and the boat can be rolled out on the bed of the truck. The tow truck driver will then lower the boat to the ground by tipping the bed and lowering it the boat with the truck's winch. The typical charge for the truck is about $70.
For shipments outside of North America, we use 40' containers. (Our 48' containers cannot be used on ships.) Only one MacGregor 26 will fit in the 40' box. These containers are loaded at our California plant, delivered to the local Los Angeles port, put on container ships, and sent anywhere in the world. Even though there is only one boat in the box, delivery costs are quite reasonable. For more information about exporting our boats, click on the "export" section in the table of contents for this web site.

The containers are sealed during shipment, and the boats arrive neat and clean. The dealer checks them over, adds whatever extra equipment that might be requested, and delivers them to the owner. The boats were carefully designed to easily and safely fit into these standard containers.

The delivery cost is quite low compared with our competitors, and varies with the distance the containers travel. You can get an exact quote from your local dealer.
Our warranty will not be valid if a foreign customer (in other words, a retail customer not located in the United States or Canada) purchases a MacGregor boat and/or trailer directly from a United States dealer of MacGregor Yacht Corporation rather than from an authorized foreign dealer of MacGregor Yacht Corporation.

The terms of the above paragraph are necessary because of the extremely complex legal and certification requirements of most foreign countries. It is essential for our protection and for the protection of the customer that foreign sales and service are handled by authorized foreign dealers who thoroughly understand the complex rules of the countries in which they sell, and who can modify the boats to meet these requirements.

If you are interested in a MacGregor 26, and live outside of the United States or Canada, please contact Paul or Laura MacGregor Sharp at the following location:

PMB 921, 177 Riverside Ave, Newport Beach, California, 92663 USA

Telephone: (949) 642-9491
Fax: (949) 642-5558
email address: info@macgregorexport.com
FACTORY GARAGE SALE

Over the years, we have accumulated surplus boats, outboard motors, parts and equipment that we would like to sell to make more room for our current production.

AUTOMOTIVE SPRAY BOOTH $3900

Galvanized steel
24' long x 14' wide x 10” high
Can be dismantled and shipped anywhere
5 hp fans, complete roof ducting and rainproof roof cap
OSHA compliant
Halon fire control system
Automatic system shut off when doors are opened
Excellent filtering systems, both outgoing and incoming air.
Full width double doors at both ends, with built in filters.
Side personnel door
Flush mounted interior lighting

Since we are now making aluminum trailers that require very little painting, we have no more need this.
booth. We have moved the spraying of the trailer bow stand, hitch and ladder to our main fiberglass shop.

20 HP OVERHEAD TRACE ROUTER $2900 **SOLD**

We used this router for years to accurately cut out all of our bulkheads, hatches, windows, mirrors, core material, tables and a wide variety of smaller parts.

It was originally used by Lockheed Aircraft for cutting aircraft sheet aluminum parts. We no longer need this router because all of its work has been transferred to very pricey computer controlled automated gantry router.

A 4' x 8' plywood pattern board is mounted on a frame over the router. A 1/2" stainless steel finger mounted on top of the router follows the shape of each template that is screwed to the underside of the pattern board. The router is manually moved so that the finger stays in contact with the shape on the pattern board (which is the exact shape of the part to be cut.) The router bit at the bottom end of the router (usually 1/2" in diameter) is exactly aligned vertically with the finger at the top, and the router cuts the material on the table to the exact shape of the pattern mounted above. It takes only a fingertip push to guide the finger along the pattern shape.

The router will swing around to cut everything out to a 10’ radius in any direction from the center support...
A trigger on the guide handle activates a hydraulic actuator that raises the entire router up and down, allowing the bit to plunge into the material being cut and raising it when the cut is finished.

The router will take up to \(\frac{3}{4} \)" diameter cutting drills or bits. We normally used a 1/2" double fluted router bit.

It weighs approx 4000 lbs.

It is presently equipped with a large router motor. A drill press or any other tool can also be mounted on the end of the arm and can be used to drill holes in virtually anything and guarantee absolutely vertical holes. The hydraulic actuator can raise and lower any device attached to the end of the arm.

The router has a 20 hp motor with an inverter from 220 volts. The router spins at up to 20,000 rpm

It is an amazing and rare piece of equipment.
These are photos of the MacGregor 65, one of the fastest and most beautiful sailing yachts ever built.

Over an 8 year period, MacGregor 65 Corporation built 100 of these magnificent yachts. During it's production run, it was the best selling large yacht in the history of sailing.

The MacGregor 65 holds many long distance sailing records. It was also one of the finest long distance cruising yachts ever built.

In 1995, when MacGregor Yachts first became swamped with orders for the newly introduced MacGregor 26, the 65 was taken out of production to devote MacGregor's entire five acre site to the production of the 26.

The 26 is still selling beyond our wildest dreams, and we will continue to concentrate on production of the smaller boat in order to meet the huge volume of orders.
MacGregor 65 Corporation is, however, continuing to develop and engineer a 70' version of the 65. Two of the new 70's have been built, and are being actively sailed and tested.

In future years, the big boat, the MacGregor 70, will again be coming off the MacGregor 65 Corporation production line.
Above is a picture of the company's 70" Anthem, recently converted to a ketch rig. In its introductory race with the new rig, (the 120 mile, 420 boat race from Newport Beach, California to Ensenada, Mexico), the boat was one of the first to finish, beating many of the very best west coast racing machines, including Merlin and Ragtime, as well as most of the big racing catamarans and trimarans. Anthem is one of the fastest cruising yachts ever built. If the boat is put back in production, this is the likely configuration. Even though Anthem carries a very fast PHRF rating of **minus 42**, it still did quite well on corrected time.
We took home this trophy, donated by the New York Yacht Club, for the first split rig yacht to finish (ketch, yawl or schooner)
MACGREGOR 70', ANTHEM

Our MacGregor 70 ketch rigged ANTHEM, is now for sale for $250,000.
The boat is owned by MacGregor Yacht Corporation, and has served as Roger MacGregor's personal boat. We are building a new one to replace it. It is in showroom condition.

Anthem is one of the fastest boats on the West Coast. In a recent Newport to Ensenada race (the 120 mile, 420 boat race from Newport Beach, California to Ensenada, Mexico), it was the first split rig to finish, beating many of the very best west coast racing machines, including Merlin, Ragtime and Santa Cruz 70s. Anthem was first to finish in the 125 mile Marina Del Rey to San Diego race.

Even with a PHRF rating of minus 42, the boats has done well on corrected time.

Unlike the big racing boats and custom speedsters, Anthem has a full, plush interior, a very comfortable cockpit, and can be sailed single handed.

Anthem was the second MacGregor 70 to be built. It will go 12 mph under power. The interior is similar to the MacGregor 65 (100 were built). These were the best selling large cruising and racing sailboats in the history of sailing. We have added a lot of speed by using the ketch rig and a longer waterline.

Anthem is similar in construction and concept to the MacGregor 65, but it is a lot faster and more dramatic.

Anthem great looking and extremely comfortable. This famous ketch is one of the most beautiful sailboats ever built, and
is offered at a bargain price

Anthem is designed for worldwide cruising and chartering, and is the best selling large yacht in the history of sailing. It is one of the few production yachts built the American built to the Bureau of Shipping's +A1 standards and for Coast Guard certification. It is also the fastest production sailing yacht, under sail or power.

No big production sailing yachts have accumulated more deep sea sailing miles. There are nearly a hundred 65s sailing all over the world. In total, these boats gets more abuse, stress, pounding, rig loads and overall grief in one year than most competing types of boats get in a lifetime. They have been sailed from our factory in California to Istanbul, Yugoslavia, Spain, Ecuador, Malta, Bermuda, Germany, Holland, Hawaii, Australia and the Caribbean. One 65 sailed from Newport Beach, California to Australia in 6 weeks, on her maiden delivery voyage.
We took home this trophy, donated by the New York Yacht Club, for the first split rig yacht (ketch or schooner) to finish in the Ensenada race.

Professional delivery captain Don Ross writes the following: "After logging over 30,000 miles delivering the MacGregor 65 and comparing it to the numerous other cruising yachts I have delivered, I find the MacGregor 65 to be the best cruising yacht on the market...I spent 5 days in a North Atlantic gale, surfing down huge rollers, and hitting speeds over 20 knots. It was incredible to be sailing that fast, but the 65 was right at home. My crew and I just hung on and enjoyed a record breaking 7 day 14 hour passage from Bermuda to Horta (in the Azores)
APPEARANCE: Most will agree that this is one of the best looking sailboats ever built. It is a show stopper. Under sail or power, or when you pull into an anchorage, the boat will be the center of attention. Most boats, with their conventional styling, come and go virtually unnoticed. There is a saying in the aircraft industry that good looks is good aerodynamics. A vehicle that looks fast probably is. If the designer had the sense to design a great looking yacht, he probably had the sense to build one that will perform well. Sailing is an aesthetic endeavor as much as anything else. You are only here once, so don't settle for a bland, ugly or boring boat.

Arrange for a demonstration sail. You will be convinced that this unusual and spectacular yacht offers the finest sailing and the best value to be found anywhere.

If you want more information, check the appropriate boxes:

First Name
Last Name
E-mail
Street Address
City
State/Province
Zip Code
Country
Phone

If you have a questions, suggestions, or comments about our boats, our web site or anything else, please type here: It is not necessary to fill in the above form to make a comment. However, if you want a reply, please give us your phone number, address or email so we can get the job done.
Roger MacGregor

MacGregor Yacht Corporation,
1631 Placentia,
Costa Mesa, California, 92627

Phone 949 642 6830
Mold Misc

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Drawing Date</th>
<th>Part Number</th>
<th>Buy Unit</th>
<th>Quantity Per Boat</th>
<th>Annual Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bondo - White Only</td>
<td></td>
<td>301</td>
<td>GAL</td>
<td>0.3</td>
<td>180</td>
</tr>
<tr>
<td>Cabosil</td>
<td></td>
<td>604</td>
<td>LBS</td>
<td>0.2</td>
<td>120</td>
</tr>
<tr>
<td>Catalyst - Clear (NORAC 925)</td>
<td></td>
<td>608</td>
<td>LBS</td>
<td>8.0</td>
<td>4,800</td>
</tr>
<tr>
<td>Catalyst - Red Vanishing L-50</td>
<td></td>
<td>612</td>
<td>LBS</td>
<td>25.0</td>
<td>15,000</td>
</tr>
<tr>
<td>Hardner - Bondo</td>
<td></td>
<td>308</td>
<td>EA</td>
<td>0.1</td>
<td>60</td>
</tr>
<tr>
<td>Sand</td>
<td></td>
<td>681</td>
<td>BAGS</td>
<td>4.0</td>
<td>2,400</td>
</tr>
<tr>
<td>Wax - Meguires MGH8 MGM-0811</td>
<td></td>
<td>324</td>
<td>EA</td>
<td>1.3</td>
<td>750</td>
</tr>
<tr>
<td>Wax - Meguires MGH87</td>
<td></td>
<td>326</td>
<td>EA</td>
<td>0.3</td>
<td>180</td>
</tr>
<tr>
<td>PARTS LIST FOR WEB SITE - MACGREGOR</td>
<td>CLICK ON DRAWING DATE FOR A PHOTO OR DETAILED DRAWING OF THE ITEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRAWING DATE</td>
<td>OUR PART NUM</td>
<td>BUY QTY PER</td>
<td>ANNUAL USAGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------------------</td>
<td>-------------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATE</td>
<td>NUM</td>
<td>UNIT</td>
<td>BOAT</td>
<td>USAGE</td>
<td></td>
</tr>
<tr>
<td>BROCHURES-26M</td>
<td>401</td>
<td>EA</td>
<td>0.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CARD - WARANTEE</td>
<td>128</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>DECAL - MACGREGOR NAMEPLATE (COLOR)</td>
<td>01-Jan-05</td>
<td>430</td>
<td>EA</td>
<td>2.0</td>
<td>1,200</td>
</tr>
<tr>
<td>DECAL - TRAILER SERIAL NUMBER</td>
<td>13-Dec-04</td>
<td>515</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
</tr>
<tr>
<td>DECAL "ALUMINUM MASTS...."</td>
<td>13-Dec-04</td>
<td>207</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
</tr>
<tr>
<td>DECAL "JIB HALYARD..."</td>
<td>13-Dec-04</td>
<td>365</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
</tr>
<tr>
<td>DECAL- "UPPER SHROUD..."</td>
<td>13-Dec-04</td>
<td>454</td>
<td>EA</td>
<td>2.0</td>
<td>1,200</td>
</tr>
<tr>
<td>DECAL- "THE BALLAST TANK..."</td>
<td>13-Dec-04</td>
<td>174</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
</tr>
<tr>
<td>OWNERS MANUAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PAPER	CARTON CARDBOARD - 12" X 9" X 7"	332	EA	0.0	0
	CARTON CARDBOARD - 20" X 8" X 8	334	EA	0.0	0
	CARTON CARDBOARD - 24" X 14" X 14 3/8"	338	EA	0.0	0
	CARTON CARDBOARD - 36" X 8" X 8"	340	EA	1.0	600
	CARTON CARDBOARD - 6" X 6" X 6"	344	EA	0.0	0
	CARTON CARDBOARD - 8" X 5" X 5"	346	EA	0.0	0
	CARTON, CARDBOARD - 12"X 9"X 3"	331	EA	0.0	0
	CARTONCARDBOARD - 24" X 10" X 10"	336	EA	0.0	0
	CARTONCARDBOARD - 6" X 4" X 4"	342	EA	0.0	0
	PAPER - CORRUGATED 48" SINGLE FACE	350	ROLLS	0.0	0
	PAPER - KRAFT 36" 50 LB	352	ROLLS	0.0	0
Plastic Extrusion

<table>
<thead>
<tr>
<th>Drawing Date</th>
<th>Our Part Num</th>
<th>Buy Unit</th>
<th>Qty Per Boat</th>
<th>Annual Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>HATCH TRIM - WHITE PVC 14' 7" (175")</td>
<td>460 FT</td>
<td>25.6</td>
<td>15,348</td>
<td></td>
</tr>
<tr>
<td>RUB RAIL BLACK 100' ROLLS</td>
<td>485 FT</td>
<td>50.0</td>
<td>30,000</td>
<td></td>
</tr>
<tr>
<td>TRIM EDGE TRIMLOCK EGCS/16 CHROME</td>
<td>245 FT</td>
<td>10.0</td>
<td>6,000</td>
<td></td>
</tr>
<tr>
<td>TRIM - T - ANGOLA BROWN 5/8" OUTWATER 105-662-742</td>
<td>852 FT</td>
<td>143.1</td>
<td>85,872</td>
<td></td>
</tr>
</tbody>
</table>
SAILING PERFORMANCE

POWER, WATERSKI

SPINNAKER

SAFETY

EASY TO SAIL

HOW TO SAIL

WHY THE LOW PRICE

COST TO OWN

COMPARE 26X

COMPARE HUNTER EDGE

COMPANY HISTORY

HALL OF FAME AWARD

WHY BUY A SAILBOAT

MAGAZINE REVIEWS

SUPPLIERS' CORNER

SHIPPING

EXPORTING

FACTORY GARAGE SALE

MACGREGOR 65

MACGREGOR 70 ANTHEM
Plastic Sheet

<table>
<thead>
<tr>
<th>Description</th>
<th>Drawing Date</th>
<th>Part Num</th>
<th>Buy Unit</th>
<th>Qty Per Boat</th>
<th>Annual Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foam - Expanded PVC Foam 1/4" White Solid</td>
<td>800</td>
<td>SQ FT</td>
<td>75.0</td>
<td>44,982</td>
<td></td>
</tr>
<tr>
<td>Mirror - Clear Acrylic 1/8" 4' X 8'</td>
<td>824</td>
<td>SQ FT</td>
<td>10.6</td>
<td>6,360</td>
<td></td>
</tr>
<tr>
<td>Plexiglass - 1/4" Bronze 2370 4'X 8'</td>
<td>828</td>
<td>SQ FT</td>
<td>19.2</td>
<td>11,495</td>
<td></td>
</tr>
<tr>
<td>Polypropylene Sheet 3/8" White 4' X 8'</td>
<td>844</td>
<td>SQ FT</td>
<td>5.2</td>
<td>3,126</td>
<td></td>
</tr>
<tr>
<td>PARTS LIST FOR WEB SITE - MACGREGOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLICK ON DRAWING DATE FOR A PHOTO OR DETAILED DRAWING OF THE ITEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| PLUMBING |
|-----------------|-------|------|-----|
| TEE - 3/4" PVC 1856194 | 189 | EA | 1.0 | 600 |
| TUBING - 2" SCHEDULE 40 PVC | 856 | FT | 4.8 | 2,850 |
Plywood

<table>
<thead>
<tr>
<th>Drawing Date</th>
<th>Our Part Num</th>
<th>Buy Unit</th>
<th>QTY per Boat</th>
<th>Annual Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLYWOOD</td>
<td>804</td>
<td>SQ FT</td>
<td>14.3</td>
<td>8,550</td>
</tr>
<tr>
<td>MAHOGANY 1/2" FINISHED LAMINATION - 2 SIDES</td>
<td>804</td>
<td>SQ FT</td>
<td>14.3</td>
<td>8,550</td>
</tr>
<tr>
<td>MAHOGANY 3/8 FINISHED LAMINATION MATTE- 2 SIDES</td>
<td>808</td>
<td>SQ FT</td>
<td>53.3</td>
<td>31,998</td>
</tr>
<tr>
<td>MAHOGANY SKIN FOR 1/2" MATTE 4' X 8'</td>
<td>816</td>
<td>SHEET</td>
<td>28.4</td>
<td>17,046</td>
</tr>
<tr>
<td>MAHOGANY SKIN FOR 3/8" MATTE FINISH 1460 4'X 8'</td>
<td>820</td>
<td>SHEET</td>
<td>106.6</td>
<td>63,960</td>
</tr>
<tr>
<td>PLYWOOD 3/4" ACX EXTERIOR</td>
<td>836</td>
<td>SQ FT</td>
<td>0.8</td>
<td>492</td>
</tr>
<tr>
<td>PLYWOOD 1/4" ACX 4' X 8' EXTERIOR</td>
<td>834</td>
<td>SQ FT</td>
<td>1.0</td>
<td>600</td>
</tr>
<tr>
<td>MAHOGANY SKIN FOR 3/8" MATTE FINISH 1460 4'X 8'</td>
<td>820</td>
<td>SHEET</td>
<td>106.6</td>
<td>63,960</td>
</tr>
<tr>
<td>PLYWOOD 3/4" ACX EXTERIOR</td>
<td>836</td>
<td>SHEET</td>
<td>106.6</td>
<td>63,960</td>
</tr>
<tr>
<td>PLYWOOD 1/4" ACX 4' X 8' EXTERIOR</td>
<td>834</td>
<td>SHEET</td>
<td>106.6</td>
<td>63,960</td>
</tr>
<tr>
<td>PART</td>
<td>DRAWING DATE</td>
<td>OUR PART NUM</td>
<td>BUY UNIT</td>
<td>QTY PER BOAT</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>BROCHURES-26M</td>
<td></td>
<td>401</td>
<td>EA</td>
<td>0.0</td>
</tr>
<tr>
<td>CARD - WARANTEE</td>
<td></td>
<td>128</td>
<td>EA</td>
<td>1.0</td>
</tr>
<tr>
<td>DECAL - MACGREGOR NAMEPLATE (COLOR)</td>
<td>01-Jan-05</td>
<td>430</td>
<td>EA</td>
<td>2.0</td>
</tr>
<tr>
<td>DECAL - TRAILER SERIAL NUMBER</td>
<td></td>
<td>306</td>
<td>EA</td>
<td>1.0</td>
</tr>
<tr>
<td>DECAL "ALUMINUM MASTS...."</td>
<td>13-Dec-04</td>
<td>515</td>
<td>EA</td>
<td>1.0</td>
</tr>
<tr>
<td>DECAL "JIB HALYARD..."</td>
<td>13-Dec-04</td>
<td>207</td>
<td>EA</td>
<td>1.0</td>
</tr>
<tr>
<td>DECAL- "UPPER SHROUD..."</td>
<td>13-Dec-04</td>
<td>365</td>
<td>EA</td>
<td>1.0</td>
</tr>
<tr>
<td>DECAL- "SAFETY DECAL APR 2006"</td>
<td>20-Apr-006</td>
<td>454</td>
<td>EA</td>
<td>2.0</td>
</tr>
<tr>
<td>OWNERS MANUAL</td>
<td></td>
<td>174</td>
<td>EA</td>
<td>1.0</td>
</tr>
<tr>
<td>DATE</td>
<td>NUM</td>
<td>UNIT</td>
<td>BOAT</td>
<td>ANNUAL</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>RESIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBS RESIN - SOLID STONE CLEAR 304-082</td>
<td>680</td>
<td>LBS</td>
<td>2.0</td>
<td>1,200</td>
</tr>
<tr>
<td>RESIN - LAYUP H834-RMA-20 35% VOC MAX</td>
<td>676</td>
<td>LBS</td>
<td>1,450.0</td>
<td>870,000</td>
</tr>
</tbody>
</table>
SAILING PERFORMANCE

POWER, WATERSKI

SPINNAKER

SAFETY

EASY TO SAIL

HOW TO SAIL

WHY THE LOW PRICE

COST TO OWN

COMPARE 26X

COMPARE HUNTER EDGE

COMPANY HISTORY

HALL OF FAME AWARD

WHY BUY A SAILBOAT

MAGAZINE REVIEWS

SUPPLIERS' CORNER

SHIPPING

EXPORTING

FACTORY GARAGE SALE

MACGREGOR 65

MACGREGOR 70 ANTHEM
<table>
<thead>
<tr>
<th>DATE</th>
<th>NUM</th>
<th>UNIT</th>
<th>QTY PER</th>
<th>ANNUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>210</td>
<td>EA</td>
<td>0.5</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>236</td>
<td>EA</td>
<td>0.1</td>
<td>60</td>
</tr>
</tbody>
</table>

RIGGING

- FURLER - CDI FLEXIBLE FF2M 25'8" WITH PARTS BOX
- ROLLER FURLING SYSTEM
RANGE 26

CLICK ON DRAWING DATE FOR A PHOTO OR DETAILED DRAWING OF THE ITEM

ROPE

<table>
<thead>
<tr>
<th>DRAWING DATE</th>
<th>OUR PART NUM</th>
<th>BUY QTY PER UNIT</th>
<th>ANNUAL USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>415-100-33</td>
<td>200 FT</td>
<td>308.8</td>
</tr>
<tr>
<td></td>
<td>39870</td>
<td>885 FT</td>
<td>150.0</td>
</tr>
<tr>
<td></td>
<td>209</td>
<td>209 FT</td>
<td>20.2</td>
</tr>
</tbody>
</table>

SAILING PERFORMANCE

POWER, WATERSKI

SPINNAKER

SAFETY

EASY TO SAIL

HOW TO SAIL

WHY THE LOW PRICE

COST TO OWN

COMPARE 26X

COMPARE HUNTER EDGE

COMPANY HISTORY

HALL OF FAME AWARD

WHY BUY A SAILBOAT

MAGAZINE REVIEWS

SUPPLIERS' CORNER

SHIPPING

EXPORTING

FACTORY GARAGE SALE

MACGREGOR 65

MACGREGOR 70 ANTHEM
<table>
<thead>
<tr>
<th>SAILS</th>
<th>DRAWING DATE</th>
<th>OUR PART NUMBER</th>
<th>BUY UNIT</th>
<th>ANNUAL USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAIL - GENOA WITH HANKS</td>
<td>NOV 3 2005</td>
<td>408</td>
<td>EA</td>
<td>24</td>
</tr>
<tr>
<td>SAIL - GENOA WITH LUFF TAPE</td>
<td>NOV 3 2005</td>
<td>412</td>
<td>EA</td>
<td>276</td>
</tr>
<tr>
<td>SAIL - JIB WITH HANKS</td>
<td>NOV 12 2005</td>
<td>416</td>
<td>EA</td>
<td>48</td>
</tr>
<tr>
<td>SAIL - JIB WITH LUFF TAPE</td>
<td>NOV 1 2005</td>
<td>404</td>
<td>EA</td>
<td>276</td>
</tr>
<tr>
<td>SAIL - MAIN</td>
<td>MAY 20 2009</td>
<td>405</td>
<td>EA</td>
<td>600</td>
</tr>
<tr>
<td>SAIL - CRUISING SPINNAKER</td>
<td></td>
<td></td>
<td></td>
<td>108</td>
</tr>
<tr>
<td>SEALANT</td>
<td>DATE</td>
<td>NUM</td>
<td>UNIT</td>
<td>QTY PER BOAT</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>CAULKING - 3M 5200 -WHITE</td>
<td>303</td>
<td>EA</td>
<td>6.0</td>
<td>3,600</td>
</tr>
<tr>
<td>158485 06500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SILICONE DOW 795 BLACK</td>
<td>316</td>
<td>EA</td>
<td>2.5</td>
<td>1,500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Service

<table>
<thead>
<tr>
<th>Date</th>
<th>Num</th>
<th>Unit</th>
<th>QTY Per Boat</th>
<th>Annual Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>471</td>
<td>EA</td>
<td>2.0</td>
<td>1,200</td>
</tr>
</tbody>
</table>

Lifeline Pelican Hook Swage
SAILING PERFORMANCE

POWER, WATERSKI

SPINNAKER

SAFETY

EASY TO SAIL

HOW TO SAIL

WHY THE LOW PRICE

COST TO OWN

COMPARE 26X

COMPARE HUNTER EDGE

COMPANY HISTORY

HALL OF FAME AWARD

WHY BUY A SAILBOAT

MAGAZINE REVIEWS

SUPPLIERS' CORNER

SHIPPING

EXPORTING

FACTORY GARAGE SALE

MACGREGOR 65

MACGREGOR 70 ANTHEM
<table>
<thead>
<tr>
<th>PARTS LIST</th>
<th>ISSUE DATE</th>
<th>OUR PART NUM</th>
<th>UNIT</th>
<th>QTY PER BOAT</th>
<th>ANNUAL USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEWING</td>
<td>16-Nov-05</td>
<td>699</td>
<td>EA</td>
<td>0.4</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>707</td>
<td>ROLLS</td>
<td>0.1</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>735</td>
<td>EA</td>
<td>0.6</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td></td>
<td>737</td>
<td>EA</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1116</td>
<td>EA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>741</td>
<td>EA</td>
<td>0.8</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td></td>
<td>739</td>
<td>EA</td>
<td>0.0</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>738</td>
<td>LB</td>
<td>0.2</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td></td>
<td>241</td>
<td>EA</td>
<td>0.6</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td></td>
<td>745</td>
<td>YD</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>746</td>
<td>YD</td>
<td>13.8</td>
<td>8,280</td>
</tr>
<tr>
<td></td>
<td></td>
<td>747</td>
<td>YD</td>
<td>0.8</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td></td>
<td>748</td>
<td>EA</td>
<td>11.0</td>
<td>6,601</td>
</tr>
<tr>
<td>Steel Product Description</td>
<td>Drawing Date</td>
<td>Part Number</td>
<td>Unit</td>
<td>Quantity per Boat</td>
<td>Annual Usage</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>-------------</td>
<td>------</td>
<td>-------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Steel - Angle 2" X 2" X 3/16" 20'</td>
<td>966</td>
<td>FT</td>
<td>9.0</td>
<td>5,400</td>
<td></td>
</tr>
<tr>
<td>Steel - Channel 3" X 4.1 LB X 20'</td>
<td>968</td>
<td>FT</td>
<td>10.0</td>
<td>6,000</td>
<td></td>
</tr>
<tr>
<td>Steel - Channel 4" X 5.4 LBS X 20'</td>
<td>982</td>
<td>FT</td>
<td>4.0</td>
<td>2,400</td>
<td></td>
</tr>
<tr>
<td>Steel - Channel 4" X 5.4 LBS X 20'</td>
<td>980</td>
<td>FT</td>
<td>2.0</td>
<td>1,200</td>
<td></td>
</tr>
<tr>
<td>Steel - Channel 3" X 5.4 LBS X 20'</td>
<td>984</td>
<td>FT</td>
<td>16.0</td>
<td>9,601</td>
<td></td>
</tr>
<tr>
<td>Steel - Channel 4" X 5.4 LBS X 20'</td>
<td>988</td>
<td>FT</td>
<td>40.0</td>
<td>24,000</td>
<td></td>
</tr>
<tr>
<td>Steel - Bar 1/4" X 3" 20'</td>
<td>982</td>
<td>FT</td>
<td>4.0</td>
<td>2,400</td>
<td></td>
</tr>
<tr>
<td>Steel - Square Tube 3" .188 WALL 20'</td>
<td>980</td>
<td>FT</td>
<td>2.0</td>
<td>1,200</td>
<td></td>
</tr>
<tr>
<td>Steel - Square Tube 3" .188 WALL 20'</td>
<td>984</td>
<td>FT</td>
<td>7.0</td>
<td>4,200</td>
<td></td>
</tr>
<tr>
<td>Steel - Square Tube 3" .188 WALL 20'</td>
<td>980</td>
<td>FT</td>
<td>2.0</td>
<td>1,200</td>
<td></td>
</tr>
<tr>
<td>Steel - Square Tube 3" .188 WALL 20'</td>
<td>984</td>
<td>FT</td>
<td>7.0</td>
<td>4,200</td>
<td></td>
</tr>
<tr>
<td>Steel - Square Tube 3" .188 WALL 20'</td>
<td>980</td>
<td>FT</td>
<td>2.0</td>
<td>1,200</td>
<td></td>
</tr>
<tr>
<td>DRAWING DATE</td>
<td>OUR PART NUM</td>
<td>BUY UNIT</td>
<td>QTY PER BOAT</td>
<td>ANNUAL USAGE</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>----------</td>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEERING BEZEL KIT- TELEFLEX SB39526</td>
<td>570</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>STEERING CABLE 8' TELEFLEX SSC13408</td>
<td>574</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>STEERING HELM STELFLEX SH5210</td>
<td>578</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>STEERING WHEEL- 15 1/2" 5 SPOKE MARINE DEPOT 7304</td>
<td>582</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>TAPE</td>
<td>DRAWING DATE</td>
<td>OUR PART NUM</td>
<td>BUY UNIT</td>
<td>QTY PER BOAT</td>
<td>ANNUAL USAGE</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>TAPE 2 SIDED MCMASTER 7598A25 BLACK</td>
<td>845</td>
<td>ROLLS</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TAPE - CLEAR VINYL 2"X 110"</td>
<td>354</td>
<td>RL</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TAPE - DUCT 2"X 60 YD</td>
<td>434</td>
<td>RL</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TAPE - FIBER 1/2" 3M 8934</td>
<td>318</td>
<td>RL</td>
<td>0.5</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>TAPE - MASKING 1 1/2" GENERAL PURPOSE</td>
<td>320</td>
<td>RL</td>
<td>3.0</td>
<td>1,800</td>
<td>1,800</td>
</tr>
<tr>
<td>TAPE - MASKING 3/4" GENERAL PURPOSE</td>
<td>322</td>
<td>RL</td>
<td>0.3</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>TAPE REINFORCED 3"X450'</td>
<td>356</td>
<td>RL</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
SAILING PERFORMANCE
POWER, WATERSKI
SPINNAKER
SAFETY
EASY TO SAIL
HOW TO SAIL
WHY THE LOW PRICE
COST TO OWN
COMPARE 26X
COMPARE HUNTER EDGE
COMPANY HISTORY
HALL OF FAME AWARD
WHY BUY A SAILBOAT
MAGAZINE REVIEWS
SUPPLIERS' CORNER
SHIPPING
EXPORTING
FACTORY GARAGE SALE
MACGREGOR 65
MACGREGOR 70 ANTHEM
<table>
<thead>
<tr>
<th>ITEM</th>
<th>DRAWING DATE</th>
<th>OUR PART NUM</th>
<th>BUY UNIT</th>
<th>QTY PER BOAT</th>
<th>ANNUAL USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLUID - BRAKE KRAGEN-</td>
<td>948</td>
<td>GAL</td>
<td>0.1</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>LUBRICANT - ANTISEIZE MCMASTER 1367K71</td>
<td>312</td>
<td>EA</td>
<td>0.0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>TRAILER BRAKES</td>
<td>DRAWING DATE</td>
<td>OUR PART NUM</td>
<td>BUY UNIT</td>
<td>QTY PER BOAT</td>
<td>ANNUAL USAGE</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>ACTUATOR - BRAKE - A-60L 34630</td>
<td>920</td>
<td>EA</td>
<td>1.0</td>
<td>570</td>
<td></td>
</tr>
<tr>
<td>BRAKE LINE KIT - M26M 4623500 17' TUBE</td>
<td>928</td>
<td>EA</td>
<td>0.8</td>
<td>504</td>
<td></td>
</tr>
</tbody>
</table>
SAILING PERFORMANCE

POWER, WATERSKI

SPINNAKER

SAFETY

EASY TO SAIL

HOW TO SAIL

WHY THE LOW PRICE

COST TO OWN

COMPARE 26X

COMPARE HUNTER EDGE

COMPANY HISTORY

HALL OF FAME AWARD

WHY BUY A SAILBOAT

MAGAZINE REVIEWS

SUPPLIERS' CORNER

SHIPPING

EXPORTING

FACTORY GARAGE SALE

MACGREGOR 65

MACGREGOR 70 ANTHEM
| TRAILER CUSTOM | HOLDER - LICENSE PLATE | 954 | EA | 2.0 | 1,200 |

<table>
<thead>
<tr>
<th>DRAWING DATE</th>
<th>OUR PART NUM</th>
<th>BUY UNIT</th>
<th>QTY PER BOAT</th>
<th>ANNUAL USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE</th>
<th>NUM</th>
<th>UNIT</th>
<th>BOAT USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>954</td>
<td>EA</td>
<td>2.0</td>
</tr>
</tbody>
</table>
TRAILER ELECTRICAL

<table>
<thead>
<tr>
<th>Boat Usage</th>
<th>Drawing Date</th>
<th>Part Num</th>
<th>Unit</th>
<th>Qty Per Boat</th>
<th>Annual Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAILER ELECTRICAL</td>
<td>116</td>
<td>EA</td>
<td>2.0</td>
<td>1,200</td>
<td></td>
</tr>
<tr>
<td>BRACKET- RED LIGHT - TRAILER</td>
<td>940</td>
<td>EA</td>
<td>20.0</td>
<td>12,000</td>
<td></td>
</tr>
<tr>
<td>CLIPS - WIRE (DEL CITY9620)</td>
<td>950</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>HARNESS - WIRING FOR TRAILER TA3233</td>
<td>222</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>LIGHT - CLEARANCE, AMBER WEST COAST/CEQUENT 108017</td>
<td>224</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>LIGHT - CLEARANCE, RED WEST COAST/CEQUENT 108138</td>
<td>218</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>LIGHT 3 LENS WITH RED CLEARANCE LIGHT - TRAILER</td>
<td>230</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>LIGHT BAR NEMROW-JOHNSON J-569-R</td>
<td>228</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>LIGHTS - TAIL WITHOUT LICENSE PLATE ILLUMINATOR WESBAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIGHTS - TAIL, WITH LICENSE PLATE ILLUMINATOR WESTBAR 103364</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTS LIST FOR WEB SITE - MACGREGOR</td>
<td>"CLICK ON DRAWING DATE FOR A PHOTO OR DETAILED DRAWING OF THE ITEM"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SITE MAP</td>
<td>16-Nov-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MACGREGOR 26</td>
<td>Page 1 of 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAILER PARTS STANDARD</td>
<td>DRAWING DATE
 OUR PART NUM
 BUY QTY PER ANNUAL USAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOME PAGE</td>
<td>DATE
 NUM
 UNIT
 BOAT
 USAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEALER LIST</td>
<td>TRAILER PARTS STANDARD
 BLOCK - BOW - CRATON Y334</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRICE LIST</td>
<td>CASTER - SHELBY 2997-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOTO GALLERY</td>
<td>CASTERS - 4" STEEL - RIGID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTACT US</td>
<td>CHAIN - 1/4" PROOF COIL CPC08W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BROCHURE</td>
<td>FENDERS 7 1/2" X 48" X 33" EACH, NOT PAIRS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTRUCTION MANUAL</td>
<td>HITCH - 2" BALL UNIQUE CS50 34099 SAE CLASSIC 4200 GVW CAP.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIDEOS</td>
<td>JACK - SHELBY (5765A-24) 850 LB CAPACITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOAT DRAWINGS</td>
<td>QUICK LINK 7350 8N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIFICATIONS</td>
<td>REFLECTORS - WESBAR 3354</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTERIOR</td>
<td>STUD 5/8" - 11 X 2 1/2" THREADED STUD STEEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WATER BALLAST</td>
<td>WINCH - TRAILER NEMROW DUTTON DL1100A 1200 POUND (15112)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TRAILER RUNNING GEAR

<table>
<thead>
<tr>
<th>PARTS LIST FOR WEB SITE - MACGREGOR</th>
<th>16-Nov-05</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLICK ON DRAWING DATE FOR A PHOTO OR DETAILED DRAWING OF THE ITEM</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DRAWING DATE</th>
<th>OUR PART NUM</th>
<th>BUY QTY PER UNIT</th>
<th>ANNUAL USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAILER RUNNING GEAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AXLE STANDARD - DC42F-5S 34035 4200 LB CAPACITY</td>
<td>922</td>
<td>EA</td>
<td>0.1</td>
</tr>
<tr>
<td>AXLE SURGE- 4200 LB AXLE DC-42V (44200) 3 1/2" DROP</td>
<td>924</td>
<td>EA</td>
<td>0.8</td>
</tr>
<tr>
<td>BOLT - SHACKLE 9/16"- 18 (SPRING HANGER KIT)</td>
<td>913</td>
<td>EA</td>
<td>6.0</td>
</tr>
<tr>
<td>BRA - BULK 23B 05304</td>
<td>927</td>
<td>EA</td>
<td>2.0</td>
</tr>
<tr>
<td>BUSHING, NYLON .75"OD (SPRING HANGER KIT) 32481</td>
<td>929</td>
<td>EA</td>
<td>4.0</td>
</tr>
<tr>
<td>COVER - STUD 32854</td>
<td>945</td>
<td>EA</td>
<td>4.0</td>
</tr>
<tr>
<td>HANGER - FRONT SPRING H2 (SPRING HANGER KIT)</td>
<td>949</td>
<td>EA</td>
<td>2.0</td>
</tr>
<tr>
<td>LUG NUT - FOR AXLE</td>
<td>941</td>
<td>EA</td>
<td>10.0</td>
</tr>
<tr>
<td>NUT - HEX 1/2"-13 UNC-2B (SPRING HANGER KIT)</td>
<td>957</td>
<td>EA</td>
<td>8.0</td>
</tr>
<tr>
<td>PLATE 5 HOLE 2" (SPRING HANGER KIT)</td>
<td>969</td>
<td>EA</td>
<td>2.0</td>
</tr>
<tr>
<td>REAR SPRING HANGER ASSY (SPRING HANGER KIT)</td>
<td>973</td>
<td>EA</td>
<td>2.0</td>
</tr>
<tr>
<td>SPRINGS SPR-52-7 32469 5200 LB AXLE, 2600 LBS EA</td>
<td>974</td>
<td>EA</td>
<td>2.0</td>
</tr>
<tr>
<td>STRAP - LINK 2.25" (SPRING HANGER KIT) 33516</td>
<td>989</td>
<td>EA</td>
<td>4.0</td>
</tr>
<tr>
<td>TIRE AND WHEEL ASSY 705612CB225C 2100 LB CAPACITY EACH</td>
<td>990</td>
<td>EA</td>
<td>2.0</td>
</tr>
<tr>
<td>U BOLT 1/2" - 13X7 .25" (SPRING HANGER KIT)</td>
<td>993</td>
<td>EA</td>
<td>4.0</td>
</tr>
<tr>
<td>WASHER - LOCK 1/2" ID (SPRING HANGER KIT) 32455</td>
<td>995</td>
<td>EA</td>
<td>8.0</td>
</tr>
</tbody>
</table>
SAILING PERFORMANCE

POWER, WATERSKI

SPINNAKER

SAFETY

EASY TO SAIL

HOW TO SAIL

WHY THE LOW PRICE

COST TO OWN

COMPARE 26X

COMPARE HUNTER EDGE

COMPANY HISTORY

HALL OF FAME AWARD

WHY BUY A SAILBOAT

MAGAZINE REVIEWS

SUPPLIERS’ CORNER

SHIPPING

EXPORTING

FACTORY GARAGE SALE

MACGREGOR 65

MACGREGOR 70 ANTHEM
<table>
<thead>
<tr>
<th>DRAWING DATE</th>
<th>OUR PART NUM</th>
<th>BUY QTY PER UNIT</th>
<th>ANNUAL USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| VIDEO | VIDEO- DVD -- M26M POWERSAILER | 437 | EA | 0.0 | 0 |

<table>
<thead>
<tr>
<th>DRAWING DATE</th>
<th>OUR PART NUM</th>
<th>BUY QTY PER UNIT</th>
<th>ANNUAL USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>994</td>
<td>LB 4.3</td>
<td>2,580</td>
</tr>
</tbody>
</table>

WELDING

- WIRE - WELDING (MIG) E70S-6 .045, 30 LB /SPOOL
Wire

<table>
<thead>
<tr>
<th>Drawing Date</th>
<th>Part Number</th>
<th>Unit</th>
<th>QTY Per Boat</th>
<th>Annual Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Jan 06</td>
<td>362</td>
<td>FT</td>
<td>92.8</td>
<td>55,656</td>
</tr>
<tr>
<td></td>
<td>364</td>
<td>FT</td>
<td>78.0</td>
<td>46,800</td>
</tr>
<tr>
<td></td>
<td>368</td>
<td>EA</td>
<td>29.3</td>
<td>17,568</td>
</tr>
<tr>
<td></td>
<td>370</td>
<td>EA</td>
<td>16.0</td>
<td>9,601</td>
</tr>
<tr>
<td></td>
<td>372</td>
<td>EA</td>
<td>2.0</td>
<td>1,200</td>
</tr>
<tr>
<td></td>
<td>374</td>
<td>EA</td>
<td>25.6</td>
<td>15,384</td>
</tr>
<tr>
<td></td>
<td>246</td>
<td>REEL</td>
<td>18.0</td>
<td>10,800</td>
</tr>
</tbody>
</table>

CABLE 1/8" 1X19 STAINLESS STEEL OIL FREE 316
CABLE 5/32" 1X19 STAINLESS STEEL OIL FREE 316
FORESTAY - COMPLETE 26M 26 11 1/2"
SLEEVE - NICOPRESS 1/8" S-11-004
SLEEVE - NICOPRESS 5/32" S-11-005
THIMBLE - NICOPRESS 3/16" STAINLESS STEEL F-15-006 AN-100C
THIMBLE - NICOPRESS 5/32" F-15-005 VER AN-100C5 SERIES
WIRE - SAFETY LOCK MCMASTER 8860K63
<table>
<thead>
<tr>
<th>PARTS LIST FOR WEB SITE - MACGREGOR</th>
<th>CLICK ON DRAWING DATE FOR A PHOTO OR DETAILED DRAWING OF THE ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>WOOD</td>
<td></td>
</tr>
<tr>
<td>MAHOGANY 5/4 S2S 1" NET x 8' ONLY - SMOOTH RIP TO 4" NET</td>
<td>812</td>
</tr>
<tr>
<td>WOOD - 2" X 4" X 14' NUMBER 2 DOUGLAS FIR</td>
<td>862</td>
</tr>
<tr>
<td>WOOD - FIR 1" X 2" X8'</td>
<td>866</td>
</tr>
<tr>
<td>WOOD - FIR 2" X 4" X 12' NO. 2 AND BETTER S4S</td>
<td>996</td>
</tr>
</tbody>
</table>

PLEASE FILL OUT THIS FORM FOR A FREE DVD AND BROCHURE.

YOUR EMAIL ADDRESS

YOUR NAME

STREET ADDRESS

CITY, STATE AND ZIP

COUNTRY

PHONE NUMBER (OPTIONAL)

COMMENTS OR REQUESTS
MacGregor 26: Factory website, $21,500 trailerable sailboat, 24 mph, the WORLD'S best selling cruising sailboat.

(IF YOU HAVE TROUBLE PLAYING THE VIDEO, SCROLL DOWN THE PAGE FOR INSTRUCTIONS)

IF YOU HAVE TROUBLE STARTING THE VIDEO, HIT THE PAUSE AND START BUTTON A FEW TIMES

TO EXIT THIS PAGE, CLICK ON THE "BACK" ARROW AT THE TOP LEFT CORNER OF THE PAGE. IF THE VIDEO DOES NOT AUTOMATICALLY START TO PLAY, YOU MAY FIND AN INFORMATION BAR AT THE TOP OF THE SCREEN. THIS MAY INDICATE THAT YOUR SECURITY SOFTWARE WON'T ALLOW THE VIDEO PLAYER TO LOAD. CLICK ON THE INFORMATION BAR AND CLICK "ALLOW". THIS IS A STREAMING VIDEO. THE VIDEO WILL AUTOMATICALLY START TO DOWNLOAD AND BEGIN TO PLAY. WITH SOME LOWER POWER COMPUTERS, THE VIDEO MAY PLAY FASTER THAN THE DATA DOWNLOADS. IF THIS HAPPENS, THERE MAY BE A PAUSE UNTIL THE DOWNLOAD CATCHES UP. WAIT FOR A BIT, AND IT WILL START TO PLAY AGAIN ON ITS OWN. YOU CAN WATCH THE PROGRESS OF THE PLAYING AND DOWNLOADING ON THE BAR BELOW THE VIDEO. THE OVAL SHAPED OBJECT INDICATES WHAT IS BEING PLAYED, AND THE COLORED BAR BENEATH THE OVAL INDICATES WHAT HAS BEEN DOWNLOADED.
PHOTO GALLERY PAGE 4

MACGREGOR 26 IN GALE FORCE WINDS AND ROUGH SEAS

(WINDS 34 TO 47 MPH, 10' TO 18' WAVES)
California is noted for its mild weather. However, we occasionally get Santa Ana winds that blow up to 100 mph.

Since the Santa Anas blow from the deserts out to sea, they tend to die out at sea, and don't generate large waves.
In April of this year, we had an unusual condition. Very strong Northwesterly winds blew for 3 days, generating really large seas. On April 16th, the Coast Guard posted gale warnings, (signifying winds from 34 to 47 knots, with waves to 10').

We pulled a boat out of the Newport Boat Show and went sailing.

You see the results in the above photos.

We used the company's MacGregor 70, Anthem (see below), for a photo boat. The 70's crew included Roger MacGregor (the photographer) and Tony Medina (our Assembly Manager), whose photos appear below. The 70 was driven by Matt Clary, (our Purchasing Manager). Rest assured that we didn't have the huge pile of sails on Anthem that you see below.

The 26 was sailed by Mike Inmon, our Newport Beach dealer, and crewed by his son Jeff Inmon. (The ballast tank was full.)

The wind speed indicator on the 70 read a steady 37 MPH of true wind, with frequent gusts into the mid forties. The typical waves ran about 10 to 12 feet, with some really big ones (see the first photo, above), that looked to be about 16 to 17 feet. The crest of the big wave in the first photo was about 200 feet behind the 26 when the photo was taken.

We encountered the strongest winds and biggest waves about 8 miles off the coast.

It was rough.

The 26 was quite happy. The 26 crew seemed to get a lot less spray than we did on Anthem. The smaller boat rode up and over the steep wave faces and foaming crests, while the larger boat slammed through waves creating a lot more flying water.

This is one of those "don't try this at home" things. When the Coast Guard posts small craft, gale and storm warnings, and conditions get this rough, stay off of the ocean or lake.

While we don't recommend sailing in these extreme conditions, it is the best way there is for us to test our boats. If you do get caught in extreme conditions, it might be reassuring to know that the boat has been there and done that.
In these extreme winds, it is important to have a well balanced and deeply reefed sailplan. The foresail that you see in the photos is our normal genoa on a roller furler, with only a small amount of sail exposed.

If the boat wants to round up into the wind, unroll a bit more genoa, or let the mainsail out. This will move the center of pressure on the rig forward, and make it less likely to round up into the wind and waves.

If the boat wants to head away from the wind, reef in the genoa and tighten up the main. With the proper balance, the boat will track along fine with a lot less load on the rudders.
PLEASE WAIT A FEW SECONDS FOR FOR STARTUP
We have recently started offering the MacGregor 26 in black, as seen below. We previously offered only white and dark blue.

Nathaniel Herschoff, the very famous naval architect of the 1920's, stated the following: "There are only two colors for a boat. Black and white. And only a fool would own a black boat."

But that was before the days of fiberglass and really durable finishes. Black boats are elegant, and they have been big sellers. Black required a bit more polishing and care, but the results are worth it.
Sailing makes for a great date

Waterskiing off the California coast
LAUNCHING POWER, WATERSKI SPINNAKER SAFETY EASY TO SAIL HOW TO SAIL WHY THE LOW PRICE COST TO OWN COMPARE 26X COMPARE HUNTER EDGE COMPANY HISTORY HALL OF FAME AWARD WHY BUY A SAILBOAT MAGAZINE REVIEWS SUPPLIERS' CORNER SHIPPING EXPORTING FACTORY GARAGE SALE MACGREGOR 65 MACGREGOR 70 ANTHEM

Lots of light and comfort

A cozy cabin at night

LAUNCHING

Reaching in 20 knots of wind

Powering at about 21 knots

Launching off the beach. Check out the Arabian Dhow
A 26 passing the famous Burj al Arab Hotel in Dubai

A really remote corner of the Arabian Sea

Tropics. Waiting for the tide
Marina Del Rey, California

PHOTO GALLERY, GO TO PAGE:

1. MISCELLANOUS PHOTOS

2. MISCELLANOUS PHOTOS

3. MISCELLANOUS PHOTOS

4. SAILING IN GALE FORCE WINDS

5. SEATTLE OWNERS' PARTY
Powering and sailing into an inlet with big swells

Drifting in light air, Newport Beach, California
Anchoring near the Grand Tetons. Try this with a 30' keel boat.

Towing the kid in Australia.

Its breezy here, but when he gets behind this big thing, it will be really calm.
PHOTO GALLERY, GO TO PAGE:

1 MISCELLANOUS PHOTOS

2 MISCELLANOUS PHOTOS

3 MISCELLANOUS PHOTOS

4 SAILING IN GALE FORCE WINDS

5 SEATTLE OWNERS' PARTY
PHOTO GALLERY PAGE 3

The cruising spinnaker

The boat's wake with the Southern California coast in the background
This 26X gets a lot of attention

Sailing across the wind with the genoa jib
Heading for Marine Marketing in Seattle, on their truck

Raftup in New Zealand
PHOTO GALLERY, GO TO PAGE:

1 MISCELLANOUS PHOTOS
2 MISCELLANOUS PHOTOS
3 MISCELLANOUS PHOTOS
4 SAILING IN GALE FORCE WINDS
5 SEATTLE OWNERS' PARTY
This is a MacGregor Owner's Association rendezvous in the Seattle area. There are many of these clubs throughout the world, and they offer a lot of fun.
PHOTO GALLERY, GO TO PAGE:

1 MISCELLANOUS PHOTOS

2 MISCELLANOUS PHOTOS

3 MISCELLANOUS PHOTOS

4 SAILING IN GALE FORCE WINDS

5 SEATTLE OWNERS' PARTY
22 MPH UNDER POWER
GREAT SAILING PERFORMANCE
LOWEST COST
FULL STANDING HEADROOM
WHEEL STEERING

ENCLOSED HEAD
SLEEPS 6
FULL GALLEY
WALK THRU TRANSOM
BUILT IN SAFETY FLOTATION

UNDER 8’ WIDE FOR LEGAL TRAILERING
ALUMINUM TRAILER
ROTATING MAST SYSTEM
LAUNCH AND RIG IN 10 MINUTES
WATER BALLAST SYSTEM

The World’s Best Selling Cruising Sailboat

- **Length overall:** 25' 10"
- **Waterline length:** 23' 2"
- **Width (Beam):** 7' 9"
- **Draft, board up:** 12"
- **Draft, board down:** 5' 9"
- **Engine capacity:** 5 to 60 h.p.
- **Speed, 60 hp outboard:** 22 mph
- **Water ballast:** 1150 lbs
- **Permanent ballast:** 300 lbs
- **Total ballast:** 1450 lbs
- **Boat weight, empty:** 2550 lbs
- **Standard trailer weight:** 530 lbs
- **Sail areas:**
 - Main: 170 sq. ft.
 - Jib (100 %): 130 sq. ft.
 - Main and jib: 300 sq. ft.
 - Genoa (150%): 206 sq. ft.
 - Cruising spinnaker: 350 sq. ft.
- **Fresh water capacity:** 5 gallons
- **Fuel capacity:** 24 gallons
- **Mast height above deck:** 30’
- **Mast height above water:** 35’
- **Cabin headroom:** 6’
- **Berths (sleeps 6):** 2 doubles, 2 singles
- **Winches (2):**
The weathertight cabin offers full standing headroom, and comfortable accommodations for family cruising. The large sofa seats and dinette seats can be used for conversational seating, or as comfortable berths. The galley, with lots of storage space, is on the left. It has a sink, lots of counter space, and room for a stove. The galley top is standard kitchen counter height. Behind the mirrored bulkhead there is a fully enclosed head compartment. This is an absolute necessity for any voyage lasting more than a few hours. A large double berth is forward, with a big overhead foredeck hatch for good ventilation. The table is large and sturdy, and four people can comfortably have a meal. The cabin itself will easily seat 8 or more people.

This cutaway drawing shows the general interior layout. The main feature of the interior is the large galley that slides fore and aft and locks in several positions. In the forward position (shown as a shadow), there is excellent access to the large rear double berth. With the galley to the rear, there is a lot more room in the main cabin for seating and socializing. The port side seat, 8' 2" long, can be used as a large berth. Even with the galley fully to the rear, the big rear berth still makes a usable double, though access to the berth is restricted on the port side. The rear dinette seat back is easily removable for access to the rear berth on the starboard side.
Looking toward the rear of the cabin, you can see the large entry hatch, entry steps and a really big rear berth. It is about the size of a queen sized bed. The berth has full sitting headroom over a large area. A berth this large (6'6 x 5' 9'') is rare in a boat of any size. A large portable ice chest can be stored in place of the removable cushion on the forward starboard corner of the rear berth. There is also a large area under the rear dinette seat for an ice chest. The battery is located in the compartment directly under the ladder. The cockpit seats are over 6 feet long, and can be used on a nice night for outside sleeping.

This view shows the galley in the forward position. The counter height is the same as you will find in the average home kitchen. There is full standing headroom when working at the galley. There is a small rear seat behind the galley, and easy access to the big rear berth. The dinette seat back lifts out for access to the rear berth. The galley has its own water supply, room for an optional stove, and lots of storage. The black square above the cabin light is the electrical panel. There are tunnels throughout the deck liner for wiring for additional electrical items. The electrical panel and the round hatch on the opposite side are removable for access to the back of instruments that may be mounted on the rear face of the cabin.

This is the galley in the rear position. In this position, the majority of the galley is still out in the main cabin, and the stove and sink can be used. The galley can also be moved back another 12” to allow even more space in the cabin. The galley is mounted on a set of rails that are recessed into the seat. It is really easy to move, even when loaded, and can be locked in place at each of its 3 positions. The seat cushions are 5” thick, and the seat backs are soft and comfortable. The floors are carpeted, and all surfaces are nicely finished.
There is nothing better than spending the night on a cozy little yacht at a quiet anchorage. With its retracting rudders and daggerboard, the 26 can be taken into secluded, quiet coves and anchorages that other sailboats, with their deep keels, cannot reach.

This view, looking forward, shows the storage lockers under each seat. All cushions have been removed, and the hatches opened so you can see the available space.

The table lowers to provide a very wide 7’ 5” single berth. The 26 will sleep a total of 6 adults. This is far too large of a crowd, but it is possible. The galley is shown in the rear position, allowing for lots of seating or for a very long single berth.

This is the enclosed head compartment. We offer a portable and removable head, but is it possible to install a conventional thru hull marine toilet and holding tank.

There is a good, solid head door for privacy. The door folds in the center and hinges against the back of the mirrored bulkhead. This setup is a lot better than the total lack of privacy offered by the under-bunk heads found in most small boats.

This view, looking forward, shows the storage lockers under each seat. All cushions have been removed, and the hatches opened so you can see the available space.
One person can raise the mast, launch the boat and sail away in 10 to 15 minutes. Launching is easy because the boat sits lower on its trailer than any other trailerable cruising sailboat. The boat in this picture is ready to launch. Running the motor in reverse, or giving the boat a gentle push, will slide the boat off its trailer. Notice that the car's tires are not buried in the water. Also notice the rear guide posts and the large V at the nose to keep the boat centered as it goes on the trailer. There is a ladder at the front of the trailer for easy access. Once launched, the boat will float in 12" of water, allowing the boat to sail in waters where most other sailboat simply cannot go. The 26 is just under 8' wide, and can be legally trailered throughout the United States. Wider boats may need permits.

This is the mast raising system. The mast is raised and lowered using a small brake winch mounted on the support pole. The mast is so light that a kid can raise it. The system can be left in place while sailing. Even without this option, one person can raise the mast by hand.

The water ballast system. MacGregor developed this concept. It has been widely copied, and is now the standard throughout the trailerable sailboat industry. It makes it possible to have very light weight for trailering, and the ballasted stability necessary for sailing. After launching, the transom valve is opened and a tank in the bottom of the hull is gravity filled with 1150 pounds of sea water. It takes about 4 minutes. The valve is then closed, trapping the water. Under power or sail, the ballast makes the boat stable and self-righting. When the boat is floated back onto its trailer, the valve is opened. The car and trailer start up the ramp and the water drains out of the boat, leaving a trailering package that is lighter than most small powerboats. You can also empty the tank while the boat is in the water. Under power, at about 6 mph, open the valve on the transom and the tank will drain in about 4 minutes.

There are lots of bridges, and the best sailing is often on the other side. The mast raising system can be used to handle this problem. Just lower the mast and duck under. For trailering and for going under bridges, you disconnect only the forward mast support wire. The other rigging always remains in place.
SAILING PERFORMANCE: If you are buying a sailboat for the first time, performance and racing may seem of little interest to you. However, a boat that performs well is generally safer and easier to sail. It will certainly yield greater long term enjoyment.

The 26 balances beautifully. The big twin rudders give excellent control. The boat is light. A light boat like this requires less sail area to sail fast, so sail handling is easy. The 26’s light weight and its powerboat underbelly allow the boat to get up on top of the water and plane in heavy winds. In such conditions, these boats have exceeded 17 mph under sail. Most small sailboats, with their round bottoms, have speeds limited to around 5 to 6 mph.

You can always make a fast boat go slower by reducing sail, but you can’t make a slow boat sail fast. There is no sacred principle that says a great cruising sailboat should be slow, and there is no greater frustration than a comfortable houseboat that just doesn’t sail. The MacGregor 26 offers the amenities of a houseboat combined with great sailing performance. There are a lot of boats on the market that do not sail fast or handle well. The best bet is to sail any boat that you intend to buy, or watch it sailing competitively against other sailboats. The turkeys will be obvious.

DAGGERBOARD: The long, deep daggerboard keeps the boat from sliding sideways when sailing into the wind. The board is controlled by a line leading to the cockpit, and can be pulled completely up into the boat for powering, beaching, or downwind sailing. The long, thin airfoil is far more efficient than a short, wide one. This is why racing sailboat keels are deep, and why sailplane wings are long and thin. The efficient shape increases lift and reduces drag as the boat sails into the wind. This is one of the major reasons that the new 26 will point closer into the wind and sail faster than other trailerables.

The vertical retracting daggerboard has major advantages over a centerboard that swings back into the hull. The centerboard requires a huge drag producing cavity in the bottom of the hull. It also requires a large 6 foot long bump protruding upward into the boat, interfering with the most useful part of the cabin. The big hole required for centerboard retraction presents a major structural problem. Unlike daggerboards, centerboards require lots of care and maintenance, and involve underwater metal, lines and holes through the hull. The daggerboard can be lifted straight out of the top of the trunk for repair or maintenance. Unlike a centerboard, the daggerboard can be partially raised for going upwind in shallow water, while still retaining the boat’s sailing balance. A daggerboard is less likely to rattle around when on a mooring in bumpy water. On the down side, a daggerboard will bring the boat to a stop if it hits an underwater object, as will any fixed keel on a conventional boat. Unlike the centerboards on other trailerables, the daggerboard retracts completely into the hull, allowing beaching without fear of damage.

ROTATING MAST: Another reason why the boat is so fast is the rotating mast. The 26’s rig is similar to masts used on most modern catamarans. We have developed a system that allows conventional spreaders, with upper and lower shrouds. With a non-rotating mast, the mast creates lots of turbulence on the mainsail, making the first third of the sail virtually useless. The rotating mast allows perfect airflow across the mainsail. The drawing below shows the difference.

WHEEL STEERING. It is easier and more natural to drive the boat with a steering wheel than with a tiller, and a lot more comfortable. The steering pedestal mounts on a narrow pylon to allow lots of foot room in the cockpit.

THE 26 HAS TWO ENGINES, THE SAILS AND THE MOTOR. If a conventional powerboat's engine quits when you are away from land, or on a remote part of a lake, you are stuck there until outside help arrives. In many cases, attempts to start the engine drain the batteries so even radio communication becomes impossible. With the 26, simply raise the sails, and head for home. There are calms now and then, but there will usually be enough wind to get you on your way.
The picture above shows the 26 racing, in really light winds, against our MacGregor 70. The smart money was bet on the big boat, which is one of the world’s fastest production sailboats. The 26, using the large genoa headsail, actually hung in there pretty well for a while. This is an extreme example of “blanketing”, where one boat (the 70) blocks the competitor’s wind. Whenever 2 boats are sailing in the same direction, there is a race, and sailboat racing is fun.

LEARNING TO SAIL: No boat is easier to sail. You can learn to sail in an afternoon. Our owner’s instructions and web site have excellent instructions. Pick a nice day with a light breeze. Launch the boat, fill the ballast tank and buzz around with the engine until you get the hang of it. It is no tougher than driving a car. Then set the mainsail and let the wind provide some of the power. Keep the engine running at idle to get you out of any tight places. An hour or so of this and you will have a pretty good idea of how it all works. Then add the jib. An afternoon like this and you will be fairly accomplished.

To learn to sail is easy. To learn to make a boat sail to perfection can take forever (this is one of the great joys of the sport). The best argument for learning to sail is that once you start, you will stay with it for a lifetime. It is that much fun.

You will never tire of the wonderful sensation of shutting off the engine and enjoying the quiet serenity of moving along under sail. You can sail forever, for free. There is no nicer or lower cost way to spend time than sailing. There are few things in the world that are as quiet, graceful and downright fun. You will find no better way to spend an hour, a weekend or an entire vacation. From the vantage point of a sailboat, the normal cares of the world seem small. A sailboat is versatile. For a couple, put on the music, fill the ice chest and you have romance. It is also a wonderful sport for a family. Most of the families that own these boats have children, and the kids seem to love it. If you want thrills, few sports can equal heavy weather sailboat racing.

If you like people, crowds and action, a sailboat can get you there. There is also much to be said for quietly sailing off all by yourself. Sailing is one of the few pastimes left where you can get away from the crowds. There are thousands of quiet coves, rivers, islands, anchorages and secluded waterways. Many of the best vacation places are at the edge of water. Unfortunately, the land side is packed with humanity. The water side has barely been touched. Forget crowded campgrounds and RV parks. With a boat as your own private island, you can enjoy all the beauty and seclusion you want.
POWERING AND WATERSKIING: With the 60 horsepower outboard, the 26 will go about 22 mph. It will easily pull a water-skier. This adds one more bit of fun to the voyage. It will actually pull most adults at high enough speeds to create some real excitement. (Forget about pulling a crowd.) This picture was taken just off the California coastline.

THE MACGREGOR 26 IS A REALLY GOOD POWER-BOAT. At high speed, it has a remarkably comfortable, stable ride. The very sharp entry slices thru waves efficiently. It is highly maneuverable, and only a light touch on the wheel is required to hold a perfect course. Ample fuel storage is provided. There are storage hatches in the cockpit that will hold 2 standard 12 gallon fuel tanks. If you are not interested in high speed powering, the boat performs well with a 5 or 10 horsepower engine.

We limited the engine size to 60 hp for a number of reasons. An electric start 60 hp motor provides lots of speed, yet it is light enough so that sailing performance is not compromised. It is about the largest engine that can be started by hand, a nice feature if your battery goes dead. Also, the heavier, higher horsepower engines really eat up gas.

Many areas have those wonderful sailing spots that are just out of reach. Here in Southern California a favorite spot is Catalina, an island about 25 miles off the coast. Getting there and back in a conventional sailboat has always taken most of a weekend. You can be sure that sailors will use the dual nature of the 26 to shorten the distance. After a short, fast commute across the channel in their power cruiser, they can spend the weekend sailing from cove to cove and anchoring for the night. Maybe they will even stay Sunday night and speed back at dawn on Monday. You can’t do that in a conventional sailboat. If you have a favorite place that is just out of reach for a conventional sailboat, consider the MacGregor 26.

SAILING IN GALE FORCE WINDS. California is noted for its mild weather. However, in the Spring of 2009 we had unusual conditions. Very strong northeasterly winds blew for 3 days, generating some really large waves. On April 16th, the Coast Guard posted gale warnings. We pulled a boat out of the Newport Boat Show and went sailing. The anemometer at the masthead of our camera boat, a MacGregor 70, showed steady winds of 42 miles per hour with gusts to 51. The waves were big and rough. We found the highest waves about 10 miles off the coast. (In the lower left picture, the looming wave in background was about 16’, and about 200’ behind the 26 when the photo was taken.)

This is one of those “don’t do this at home” things. When the Coast Guard posts small craft warnings, and conditions get this unruly, stay off the ocean or lake. While we don’t recommend sailing in these extreme conditions, it is the best way for us to test our boats. If you get caught in such rough weather, it might be reassuring to know that the 26 has been out there and done that.
The MacGregor 70 may sail faster, but the 26 can nearly double its speed under power. Here you see the two boats going full throttle. The 70 is doing about 13 mph (very fast for a sailboat), and the 26 is doing over 20. The 26 is burning a lot less fuel.

Here is another view of the boat, showing the deck and cockpit layout, as well as our fisherman trying his luck. The hatches can be secured to keep water out of the inside of the boat. The cockpit is self-bailing. The cockpit floor is above the water level, so any water that comes into the cockpit simply drains out through the open transom. This is both a convenience and a big safety factor. (A swamped boat is no joy, and having to bail out a cockpit full of rain water is no fun either.)

WHY A TRAILERABLE SAILBOAT? On a trailer, the boat will cruise at 55 miles per hour to anywhere that you choose to go...lakes, oceans, reservoirs, rivers or any body of water over 12" deep. These boats are regularly taken far into Mexico, Canada, Alaska and to many of the world’s most beautiful recreation areas. With a conventional water bound sailboat your sailing is limited to the area near your marina, and that can get old really fast. On the road, the 26 makes a great camper.

Most sailboats must remain in the water in hard to find, very expensive slips. With this boat, you don’t need an in-the-water mooring. In areas with cold winters, the non-trailerable boat must be pulled out of the water and stored for the winter. Very often, after you pull the boat for the fall, some great Indian summer weather returns—and you are stuck because the boat is "winterized". The trailerable boat cures all of these afflictions. When you are finished sailing, you can take it home with you or leave it in a convenient, low cost storage yard.

There are ramps everywhere, and they cost very little to use, typically $2 to $5. Many are free. Anywhere you can launch a 15' skiff, you can launch a MacGregor 26. If you keep the boat at home, it is available for convenient care and maintenance.

You can live on this boat on land or on the water. Launch the boat, anchor in a quiet cove, and you can be as far away from the world as you want to be. You can have your own island, for free.

Unlike any other boat, the 26 opens up a world of endless variety—sailing, swimming, fishing, diving, water skiing or just fooling around on the water.

Remember the line from the classic Wind in the Willows, where Mole says..."Believe me, my young friend, there is nothing—absolutely nothing—half so much worth doing as simply messing about in boats."
The boat has built-in solid foam flotation to keep it afloat in the event of damage. We drilled a hole in the bottom and let it fill. It won’t sail like this, and it will be unstable…but it beats swimming. Most competing boats do not offer this essential safety protection, and their heavy keels can pull them straight to the bottom. Don’t get a boat without solid flotation.

Stability. The shallow draft V bottom hull, essential for high speed powering, provides a smooth ride through choppy water and gives a lot of stability. This photo shows a 180 pound man on the rail with the water ballast tank full. Other boats would show some serious tipping.

Reducing sail area. The roller furler allows the size of the jib to be controlled from the safety of the cockpit. In this photo the genoa has been rolled into less than 1/2 of its normal size, and the mainsail has been reduced by 40%. This is essential for sailing in high winds, and great for learning to sail in normal winds. When the wind blows hard, the boat will actually sail faster with reduced sail area.

This optional sunshade is a comfort on really hot days. It folds back, out of the way, when not in use. It can be left in place for powering or sailing. On a hot summer day, you will always be cooler on the water.

The cockpit is large and comfortable. The seats are over 6 feet long. Two 12 gallon fuel tanks fit in the lockers under the seats. Notice the lifeline rails that surround the boat. The steering seat hinges up and out of the way to allow boarding from a dock or while the boat is on its trailer.
FIBERGLASS STRUCTURES: The MacGregor 26 is built to outlast all of us. Each boat is built of individual layers of fiberglass fabrics, laid in place by hand, in a carefully controlled process. Hulls and decks are light, but strong, with extra reinforcement at all high stress points.

Most of our competitors use “chopper guns” to build their boats. These are devices for spraying a mixture of resin and very short strands of fiberglass. We don’t use them, even though they reduce cost. They do not, in our opinion, give adequate impact strength or controllable hull and deck thickness. They result in heavy laminates with low fiberglass to resin ratios, accounting for much of the excess weight found in many competitor’s boats. Light weight is the key to easy trailering and to high performance.

We have stayed away from sandwich construction. Most failures of fiberglass hulls involve the rot or delamination of balsa or foam core materials. We use only solid fiberglass laminates in the 26’s hull. If exposed to water for long periods, balsa coring material can rot and literally turn to soup, causing major structural problems. Balsa is fine, in our opinion, for decks and structures that are not constantly immersed in water, as long as there is no balsa near where holes are drilled for hardware. Foam cores are also widely used for stiffening hulls, however, they offer less than 200 pounds of adhesion per square inch. That is not much better than rubber cement. It takes over 2500 pounds per square inch to break the resin bonds that hold our hull laminates together.

Our bolted hull to deck joining system is strong, but compact, and adds little to the width of the boat. Many of our competitors use wide joining flanges, which contribute a lot to their beam, but add very little to strength or usable inside space.

RIGGING: Ours is specifically designed for trailerling. We use stay adjusters, rather than turnbuckles, for the wires that support the mast. With masts that are raised and lowered, turnbuckle bending and failure is very common. Stay adjusters are stronger and far more reliable. Also, we bolt the support wires to the mast, rather than using removable “T” fittings that can fall off and allow the wires to tangle up in the trailer wheels when on the road.

We use double nicopress fittings on the mast support wires because of their reliability. Swaged fittings have a tendency to crack, and it is impossible to determine their true condition without X-ray. The nicopress fittings, in contrast, are easy to inspect. We have had remarkable success with these fittings over many years. On hang gliders and ultra light aircraft, you will always see nicopress and not swaged fittings. These guys really have their life on the line when choosing hardware.

WHY THE LOW COST: As you have probably noticed, the price for the MacGregor 26 is considerably less than the price of boats of comparable size. The reasons are many. These boats are built in one of the most modern and efficient plants in the industry. The design is simple and straightforward, the hallmark of sound engineering. Volume production has many cost advantages. Overhead and development costs are spread over a large number of boats. We buy the same or better materials than other builders, but we buy for a lot less because of our higher volume. For example, we buy resin by the tank car, whereas most builders purchase by the barrel. Our prices can be 30% to 40% less for the same material. We, like most successful companies in aircraft, cars and virtually everything else, do our own design work. We know our manufacturing capabilities better than an outside designer. Many designers spend very little time in production plants, and tend to create boats that are extremely costly to build.
automatically cover boats under 26’.

very little, typically $5 or less. Most homeowners’ insurance policies
board gets good mileage, and the wind is free. Launch ramps cost
higher prices.

Don’t be taken in by the old adage “you get what you pay for”. It is
often the inefficient builder’s rationalization for his higher prices. Be
sure that “what you pay for” is not a builder’s high overhead, exces-
sive advertising expenditures, equipment that you do not want or
need, unnecessarily complex designs, poor inventory control, lack of
well engineered production tooling, or a wide range of other wasteful
business or manufacturing practices. These are of no value to
you, but their costs are invariably passed on to you in the form of
higher prices.

LOWEST OPERATING COST: You can keep the boat on its trail-
er, and eliminate very expensive dock fees. The 50 horsepower out-
board gets good mileage, and the wind is free. Launch ramps cost
very little, typically $5 or less. Most homeowners’ insurance policies
automatically cover boats under 26’.

Because of our volume, our work force is highly specialized. Each
worker can concentrate on one job and he soon becomes the best in
the industry at that job. Unlike most sailboat builders, we make large
investments in manufacturing engineering—the art of creating pro-
duction systems that are labor saving and foolproof. We build jigs,
fixtures and other tooling that allows the worker to do his job with a
minimum of effort and a maximum of accuracy. Computers have
helped us control cost. Advanced computer modeling is used in all
phases of design work: to create the boat itself and to prepare pat-
tterns, tooling and precise shop drawings that spell out every detail of
the boat and its production. We have created our own specialized
software for production scheduling, purchasing, inventory control,
cost control, payroll, and structural analysis.

Most of our competitors build many types of boats of varying sizes,
and their skills are spread too widely, preventing them from really
optimizing the design and production of any one model. We build
only the configuration shown in this brochure. Basically, we do just
one thing, and we do it well.

Resale value on our boats has remained high in relation to the value
of boats stored in the water. If an owner has to pay high dock fees
and finds that he is using the boat less after a few seasons, he feels the
pressure to sell it. Trailerable boats, on the other hand, don’t have the
big expense meter running. The result is that they come on the mar-
ket a lot less frequently than more expensive “in-the-water” boats.
Once the initial investment is covered, trailerable boats remain close
to cost-free. Many of the owners have held on to them for decades.
Many of the boats still look as good as the day they left the factory.
For this reason they tend to hold their value. Unlike a car, they don’t
rust away to junk in seven or eight years.

COMPANY HISTORY: MacGregor began, in the early 60’s, as a
class project at the Stanford Graduate School of Business. The com-
pany has always been the most innovative in the industry. We invent-
ed the retracting keel that started the trailerable sailboat market, the
fastest growing segment of sailing. After MacGregor built tens of
thousands of retracting keel sailboats, cars became smaller and
lighter. Weight reduction became essential for safer and easier trai-
lering. We then invented the water ballast system, that provides the
safety of a true keel boat, with the light weight needed for trailering
and high performance. The light weight then allowed us to develop
a high performance sailboat that can be driven at high speed by rela-
tively low horsepower outboard motors. The culmination of all of
this is the boat that you see on these pages. MacGregor is now one
of the highest volume sailboat manufacturers in the world. We have
built over 35,000 sailboats.
Starting in March, 2007, we are offering light, strong aluminum trailers. They offer a very high degree of corrosion resistance and will retain their good looks for a long, long time.

A free 55 minute DVD video is available, showing all aspects of the MacGregor 26’s design, construction and performance.

FOR MORE INFORMATION ABOUT THE MACGREGOR 26, SEE OUR WEB SITE.

www.macgregor26.com

MacGregor Yacht Corporation
1631 Placentia, Costa Mesa, California, 92627 Phone (949) 642-6830 FAX (949) 642-5379
SPECIAL SAFETY WARNINGS:
Boats, like any other form of transportation, have inherent
risks. Attentions to these warnings and instructions should
help keep these risks to a minimum.

THE WATER BALLAST TANK SHOULD BE FULL
WHEN EITHER POWERING OR SAILING.

IF THE BALLAST TANK IS NOT COMPLETELY FULL,
THE BOAT IS NOT SELF RIGHTING. (IF YOU CHOOSE
TO OPERATE THE BOAT WITH AN EMPTY TANK, SEE
THE SECTION ON OPERATING THE BOAT WITHOUT
WATER BALLAST.)

WHEN THE BALLAST TANK IS FULL:
- NO MORE THAN 6 PERSONS, 960 POUNDS.

WHEN THE BALLAST TANK IS EMPTY:
- NO MORE THAN 4 PERSON, OR 640 POUNDS.
- CREW WEIGHT CENTERED FROM SIDE TO SIDE.
- ALL SAILS REMOVED, ENGINE POWER ONLY.
- NO ONE ON THE CABIN TOP OR FORDECK.
- WAVES LESS THAN 1 FOOT.
- OPERATE WHERE WATER IS WARM AND
 RESCUE IS LIKELY.
- NEVER OPERATE THE BOAT WITH A PARTIALLY
 FILLED TANK.

WHEN POWERING OVER 6 MILES PER HOUR:
- RUDDERS AND DAGGERBOARD FULL UP.
- SAILS REMOVED.
- NO ONE ON THE CABIN TOP OR FOREDECK.

ALWAYS, BEFORE OPERATING THE BOAT,
CHECK TO CONFIRM THAT THE BALLAST TANK
IS FULL. THE WATER LEVEL IN THE BALLAST
TANK SHOULD BE NO MORE THAN 1" BELOW
THE LEVEL OF THE FORWARD VENT HOLE.

THEN MAKE SURE THAT THE FORWARD VENT
PLUG AND THE TRANSOM VALVE ARE CLOSED
AND SECURE.

THE FOLLOWING COMMENTS EXPLAIN WHY
THE ABOVE RULES ARE NECESSARY.

STABILITY.
Unless the water ballast tank is completely full, with 1000 pounds
of water ballast, the sailboat is not self-righting. Without the
water ballast, the boat may NOT return to an upright position if the
boat is tipped more than 60 degrees, and can capsize like most
non-ballasted sailboats.

The MacGregor is big, but relatively light, and excessive crew
weight can overpower the basic stability of the boat. For this rea-
son, we have placed the restrictions on crew capacity, shown in
the preceding section.

OPERATING WITHOUT WATER BALLAST.
There may be times when you wish to operate the boat with an
empty ballast tank. For example, when pulling a water skier,
when trying to conserve fuel, when a faster ride is desired, or
when you are in the process of filling the tank. Since only a few
miles per hour are lost with a full tank, we recommend that most
of your use of the boat be with a full tank. IF THE TANK IS EMPTY,
CARRY NO MORE THAN 4 PERSONS, OR 640 POUNDS.

When operating with an empty ballast tank, keep the crew weight
aft, low in the boat, and centered from side to side. Keep the crew
in the cockpit, sitting down. The rear of the hull is relatively flat,
and the nose area has a deep V to allow the boat to slide through
waves with less slamming. If there is a lot of crew weight for-
ward, the flat part of the hull bottom, which normally provides the
stability, is raised higher out of the water, and is less effective in
providing sideways stability. With the crew weight forward, the nose is depressed. The deep V nose shape does not contribute much to stability. When excess weight is at the front of the boat, the less stable nose area is carrying more of the weight of the boat and crew, the boat becomes far more easily tipped. Keep weight off of the forward V berth when under way, and avoid storing heavy items under the V berth. Crew members on the foredeck or cabin top are far more likely to get bounced out of the boat than those in the cockpit or inside the cabin. Anyone on the cabin top will have a natural tendency to grab the mast or mast support wires if the boat tips. That puts a heavy load high on the mast and tends to lever the boat over. Keep the weight low. Obviously, it is best to have the crew positioned so the boat sits or rides level rather than leaning to one side or the other.

Do not have the sails up when the ballast tank is empty. They can produce a very strong sideways capsize and capsize the boat.

If the waves are larger than one foot, they can induce a lot of rolling motion and compromise stability. Keep the ballast tank full in such conditions.

If you are operating where the chance of outside rescue is slim, where conditions are rough, or where the water is cold and uninviting, fill the ballast tank. You will go slower, but you will be a lot safer. A full ballast tank gives greater safety.

NEVER SAIL OR POWER WITH THE BALLAST TANK PARTIALLY FULL (except for the few minutes that it takes to drain the tank when you are under power). With the water sloshing around in the tank, the center of gravity of the water changes rapidly, which can make the boat relatively unstable. Fill the ballast tank full and make sure the vent and valves are securely closed. Be extra cautious when the tank is filling or draining. You can drain the tank by powering the boat at 7 miles per hour. You will be able to see the water shooting out the valve in the transom. The water tank will empty in about 3 to 4 minutes.

If the valve or vent plug is open, even slightly, the motion of the boat can drain the ballast water from the tank or allow the boat to fill with water. If either the vent plug or the filling valve is open, ballast can be lost when the boat leans over. You might think that the tank is full, and that the boat is self righting, but you may be unpleasantly surprised by an unexpected capsize. If the transom valve is left open, or partially open, the forward motion of the boat can drain the tank. Drain the tank in the smoothest water you can find. Avoid fast stops and starts, or turns, while the tank is draining. After you think the tank is empty, check the level with the dip tube just to make sure.

NEVER POWER THE BOAT OVER 6 MILES PER HOUR WITH THE SAILS UP. The forward speed of the boat can create enough wind to capsize the boat if the sails are up. The result could be instant capsize. If the ballast tank is empty, the boat will not be self righting.

NEVER POWER THE BOAT OVER 6 MILES PER HOUR WITH THE DAGGERBOARD OR RUDDERS DOWN. If you hit something at high speed with the dagger-

board or rudders down, you will stop really fast, and may damage the board or rudders. At high speed, the daggerboard and rudders create lots of sideways lift and can cause the boat to be unstable. This can roll the boat severely or possibly cause a capsize. Pull the daggerboard all the way up into the boat and secure it well. It is extremely important to check the control line frequently while powering to be sure the board has not come loose and lowered itself. This is particularly important when the boat is pounding into waves and things tend to get jiggled loose. It is OK to leave the daggerboard down for low speeds (under 6 mph), where it will significantly enhance steering control.

BE EXTRA CAREFUL WHEN POWERING FAST.
Slow way down in waves or when powering with large crews. Waves come in all shapes and sizes, and can yield some nasty surprises. Wave induced problems, particularly with large crew loads, or crew weight high on the boat, can cause an upset.

Watch the water ahead of you. Hitting heavy stuff in the water at high speed can damage the boat or cause capsize. There is a lot of junk out there that floats just at the surface, and it is often barely visible. Bumping into something at sailing speeds is one thing, but at high speed, it can be nasty.

The boat will be less stable with the mast up than with the mast down. The mast is light, but it is up there, and, like any other weight aloft, reduces stability. When conditions are marginal, (high winds, waves, lots of crew weight, etc.), lower the mast and secure it to the pulpit and mast carrier.

DO NOT OPERATE THE BOAT WITH A LOT OF WATER IN THE BILGE (OUTSIDE OF THE BALLAST TANK). It can slosh around and seriously degrade stability. Always keep your bilges dry. Check the bilge frequently. There are a number of places where water can collect. Check them all.

THE TOP OF THE DAGGERBOARD MUST NEVER GO MORE THAN 57” BELOW THE LEVEL OF THE DECK. There is a line, with a knot and washer, that will keep the board from going too far down. Do not change the position of the knot, and make sure that it is in the same position if the line is replaced.

DO NOT ALLOW ANY PART OF THE BOAT, TRAILER, MAST OR RIGGING TO COME IN CONTACT WITH ANY SOURCE OF ELECTRICAL POWER. If your mast or any part of your boat or rigging comes in contact with a power line, you could be killed or injured. Don’t sail your boat into a power line. Don’t raise the mast into a power line. Don’t move your boat, on its trailer, into a power line. Masts, wires, or wet fiberglass are good conductors of electricity and can carry current directly to you. Look up and make sure you will be clear of sources of power before doing anything with your boat. Don’t remove the warning decal from your mast. It may help you remember to look and avoid a major calamity.

If you are caught in an electrical storm, don’t touch anything that
is metal, including the mast, shrouds, boom, lifelines, rudder, tiller or metal hardware. If possible, don’t touch anything that is wet. Many experts recommend that a heavy gauge copper wire be securely fastened to one of the shrouds and allowed to hang in the water to carry off the electricity from a lightning strike.

MAKE SURE THAT YOU TOW YOUR BOAT WITH A LARGE ENOUGH CAR. Check with your car manufacturer or dealer to determine if the weight of the boat and trailer is within your car’s towing capacity. Load your boat so the weight on the trailer hitch is between 250 and 300 pounds. If the weight is less, the trailer will tend to swerve dangerously from side to side. If the weight is more, an excessive load will be placed on the rear end of your car, and the trailer will be very difficult to hitch or unhitch. To protect your back when removing the trailer from the car, use the hitch jack or have an adult hang on the back of the boat to take some weight off the tongue.

NEVER OVERLOAD THE BOAT AND TRAILER. THE MAXIMUM WEIGHT IS 4200 POUNDS, AS SHOWN ON THE CERTIFICATION DECAL NEAR THE HITCH, ON THE LEFT (PORT) SIDE OF YOUR TRAILER. Remember, the maximum gross vehicle weight (G.V.W.R.) includes the weight of the trailer as well as the weight of the boat and all gear in the boat. You may not deduct the weight that is carried on the hitch of the car in arriving at the G.V.W.R. Check your state law to determine if there are any other weight or braking requirements that must be met.

MAKE SURE THE TRAILER WHEEL LUG NUTS ARE TIGHT BEFORE TRAILERING THE BOAT.

BEFORE TRAILERING THE BOAT, MAKE SURE THE NOSE OF THE BOAT IS TIED SECURELY TO THE TRAILER.

MAKE SURE THE OUTBOARD MOTOR AND MAST ARE ATTACHED FIRMLY TO THE BOAT WHEN THE BOAT IS BEING TRAILERED.

DO NOT TRAILER THE BOAT WITH ANY WATER IN THE BALLAST TANK. THE 1000 POUNDS OF WATER WILL SEVERELY OVERLOAD THE TRAILER AND THE CAR. Open the transom valve and vent, and drain the tank completely before trailering. Leave the valve open when trailering.

DON’T STORE FUEL CANS INSIDE THE BOAT. Gas fumes are explosive. Keep all gasoline containers out of the boat. Store fuel tanks in the open compartments next to the pedestal.

BATTERIES ARE DANGEROUS. TREAT THEM CAUTIOUSLY. Batteries can produce explosive gas, corrosive acid and levels of electrical current high enough to cause burns. Always wear eye protection or shield your eyes when working near any battery and remove all metal rings and jewelry. Never expose a battery to open flames or sparks. Do not smoke near a battery. It could blow up. Do not allow battery acid to contact eyes, skin, fabrics or painted surfaces. Flush any contacted area with water immediately and thoroughly. Get medical help if eyes are affected. Do not charge the battery, adjust post connections or use booster cables without making sure the battery compartment is properly ventilated. When charging the battery, carefully follow the instructions on the charger. Keep the battery filled to the proper level with distilled water. Always keep vent caps tight. Do not allow metal tools or metal parts to contact the positive (+) terminal and the negative (-) terminal or any metal connected to these terminals.

DO NOT REMOVE ANY OF THE FOAM FLOTATION BLOCKS. Loss of any of the foam could seriously impair the ability of the boat to stay afloat if damaged.

IF THE CABIN OF THE BOAT IS ENTIRELY FILLED WITH WATER, AND THE BOAT IS DEPENDENT ON THE FOAM FLOTATION TO KEEP IT AFLOAT, IT WILL BE VERY UNSTABLE, AND MAY TURN UPSIDE DOWN.

WHEN RAISING AND LOWERING THE MAST, DON’T ALLOW ANYONE TO STAND WHERE THE MAST OR SUPPORT WIRES COULD FALL IF SOMETHING, OR SOMEONE, LETS GO.

BE EXCEEDINGLY CAREFUL WHEN SAILING IN HIGH WINDS. LEARN BASIC SEAMANSHIP. The Coast Guard Auxiliary Power Squadrons offer excellent courses at low cost. This is a worthwhile investment.

BE READY TO RELEASE SAIL CONTROL LINES (SHEETS) QUICKLY IF A GUST OF WIND CAUSES THE BOAT TO LEAN EXCESSIVELY. Lines should be free of kinks and knots so they will run freely through the pulleys when it is necessary to let the sails out quickly. Tie a knot in the extreme end of the line to keep it in the pulley. Letting the lines go is your best protection from a knockdown. For best performance under sail, and for safety, keep the boat from leaning (heeling) more than about 20 to 25 degrees.

ALWAYS SHUT OFF THE OUTBOARD MOTOR WHEN THE BOAT IS NEAR PEOPLE IN THE WATER. EVEN WITH LOW HORSEPOWER MOTORS, THE PROPELLER CAN DO SERIOUS DAMAGE. Don’t allow ropes to hang in the water (particularly the rudder ropes). They could tangle in the prop and stop or damage the motor.

DON’T PULL THE BOAT OVER ON ITS SIDE USING THE MAIN HALYARD. If you have to tip the boat for maintenance or for any other reason, use the jib halyard. Using the main halyard will break the mast.

DO NOT SAIL OR POWER THE BOAT WITH THE STEERING SEAT IN THE RAISED POSITION.
motion of the boat or the wind causes the seat to fall into the lowered position, someone could be hurt. Make sure the seat is secured in the open position, with the snap cable to the lifeline, every time it is opened.

AVOID ENGINE EXHAUST FUMES. Engines emit carbon monoxide, which can be fatal. Don’t wake board or swim near the stern of the boat with the engine running. Avoid sitting near the engine in still air or breathing exhaust fumes.

DON’T INSTALL LIFTING HYDROFOILS ON YOUR OUTBOARD MOTOR. They are designed to lift the stern when powering. They also contribute to instability. The benefits are not worth the risk.

GENERAL INFORMATION

TERMINOLOGY. In the following instructions, we have tried to avoid the use of nautical terms wherever possible. If you are new to the sport, having to learn a new language while you are learning to rig and sail the boat can be grim. If you are an experienced sailor, be patient with our use of non-nautical words, rather than the more technically correct sailing language.

JOBS THAT ONLY HAVE TO BE DONE ONCE. Much of what you will read in the following instructions will involve the initial setup and rigging of the boat, and will only be done once. Once this is done, it will not have to be redone each time you sail. So don’t be intimidated by the length and detail of these instructions.

BOWLINE KNOTS. It is essential to learn to tie a bowline knot. It is used all over the boat to tie stuff together. The bowline is shown below. Pull the loops tight. It will not jiggle loose, and can be easily undone even after being pulled tight under really heavy-loads.

SECURING A LINE TO A CLEAT:
The proper way to secure a line to a cleat is shown in the following drawing.

RECOMMENDED EQUIPMENT
You will need at least the following items on the boat for assembly, maintenance and safety.
- 7/16 and 9/16 end wrenches (2 of each)
- Vice grip pliers
- Screwdriver, common
- Screwdriver, phillips
- Knife
- Spare bulbs and fuses
- Flashlight
- Lifejackets, as required by the Coast Guard.
- Type IV throwable flotation device
- Horn or whistle
- Bailing bucket and bilge pump
- Compass
- Flare kit (with 3 day use and 3 night use flares)
- Fire extinguisher, type B1
- Danforth T-1200 anchor, or equivalent, with 26 feet of 1/4” chain and 150’ of 3/8” nylon line
- VHF radio (transmitter and receiver)
- Fenders for docking (2)
- Chart of your sailing area
- Dock lines

If you are sailing where rescue is not readily available, an Emergency Positioning Radio Beacon (EPIRB) is highly desirable. A small hand-held GPS set is a good idea for basic navigation.

RIGGING THE MAST

RIG BOX. Open up the box of rigging that comes with the boat and do a complete inventory to make sure everything is there. A checklist, showing each item, is packed with the parts.

UPPER SHROUDS AND FORESTAY (MAST SUPPORT WIRES). Connect the upper shrouds and forestay to the upper shroud straps (6’ from the top of the mast) with a 3/8” screw pin shackle. The side shrouds go on the right and left side, and the forestay goes between them. Tighten the shackle really tight, and put a safety wire in place so it never comes loose. The setup is shown in the photo on the next page.
LOWER SHROUDS.

The lower shrouds are installed on the lower mast brackets (12’ from the base of the mast) with a 3/8” screw pin shackle, in the same manner as the upper shrouds (except that there is no forestay between them. (The following photo shows how it all looks when completed.) Use safety wire.

LOWER SHROUDS and forestay attachment

SPREADER TUBES. Insert the spreaders into the spreader sockets as shown below. Secure the spreaders with 1/4” x 2” bolts and lock nuts. The nuts face the lower end of the mast. Tighten the nuts tight.

Spreader tube attachment

The end of the spreader tubes should be located as in the following drawing. The measurement should be taken with the upper mast support wire pulled tight.

Lower shrouds and spreader sockets

JIB HALYARD BLOCK. The jib halyard block is hung from the strap that holds the upper shrouds and forestay. Use a 1/4” screw pin shackle hung from the slot behind the hole that holds the shrouds. Tighten and safety wire the shackle as shown below.

Jib halyard block.

SPREADER TUBES. Insert the spreaders to the upper shrouds as shown below. Make sure the spreader end fittings are clamped securely to the wires. Don’t tighten the small screws too tight or the tips may strip. The spreader tip slots that hold the wire should be parallel to the mast.

Spreader ends

MAIN HALYARD (MAINSAIL HOISTING LINE). The main halyard passes through the block at the masthead. The forward end ties off to the cleat on the right side of the mast (right when looking forward). Use a bowline knot and tie a twist pin U
shackle to the back end of the halyard.

Main halyard with shackle

JIB HALYARD (JIB HOISTING LINE). The line that hoists the forward sail (jib) passes through the pulley near the top of the forestay and ties off to the cleat on the left (port) side of the mast. Tie a twist pin U shackle (with a bowline knot) to the forward end of the halyard.

Jib halyard with shackle

PREPARING FOR TRAILERING

CARRYING THE MAST ON TOP OF THE BOAT. The mast is carried on the boat with the bottom end forward and the slotted side down. Bolt the mast base to the forward rail with a 3/8” x 4 1/2” bolt and lock nut, as shown below. This bolt also serves as the mast hinge. Use locknuts on all hardware holding the mast to the boat.

Mast bolted to front rail

Make sure the bolt is secure. Use the 9/16 wrenches. You will not believe the chaos if the front end of the mast gets loose while you are trailering. If you just tie the mast to the bow rail, a sudden stop could catapult the mast into your car or even into the car ahead of you. Again, the bolt is better than rope. Extra rope tie downs are always a good precaution. Insert the mast carrier into the sockets near the captain's seat as shown below. Fasten the carrier with bolts and lock nuts. You can keep the carrier in place when sailing.

Rear mast carrier

With an extra piece of line, take a few wraps around the mast and secure the ends of the line to the mooring cleats on each side of the boat. Use a truckers hitch (see page 14 and 15) to really get it tight.

Mast tie down

SECURE ALL GEAR. Stow all loose gear inside the cabin. Leave enough separation to avoid chafing. Lock down the galley. Make sure the outboard motor is clamped tight to the boat. Add a safety cable to make sure it stays with the boat. Most motors have holes in the bracket to permit bolting the bracket to the boat. This is a good idea. Be sure to use some sealant so the bolts won’t leak.

When the mast is in its trailering position, neatly coil all mast support wires and lines, and tie them securely to the mast. If a wire or line gets loose and gets caught under the moving trailer wheel, or under the wheel of the following car, there will be big problems.

When the boat is on its trailer, don’t load up the cockpit with gear...
and people unless the rear of the trailer is blocked up. The weight could cause the trailer and boat to tip backwards.

Make sure the outboard motor is secured in the up position for trailering. Make sure the rudders are tied securely and pinned in the full up position. Use 1/4 x 2 1/4” bolts and lock nuts. The rudders will get a lot shorter if they drag on the ground.

SECURING THE BOAT TO THE TRAILER. Secure the trailer winch line to the nose of the boat as shown.

![Trailer winch line](image)

While keeping tension on the line, winch the nose of the boat snugly into the rubber bow support. Make sure these connections are good. If the line comes loose, the boat could slide off the trailer and end up on the street, or worse.

As an extra security measure, tie a line to one of the trailer side rails near the rear end of the trailer. Pass the line across the boat (under the lifelines). Pull it tight, and tie it to the other trailer rail.

PREPARING THE TRAILER

LUG NUTS.

It is the owner’s responsibility to check the lug nuts that secure the wheels to the axle before using the trailer. The wheels may have been removed in order to ship the boat to you or your dealer, and it is important for you to check to see that the lug nuts have been properly tightened. If they are loose, you may lose a wheel, with serious consequences. They should be tight. The proper setting, using a torque wrench, is 90 to 95 foot pounds. Don’t move the trailer one foot before checking these nuts.

TIRE REGISTRATION.

It is a federal law that the first licensed purchaser of any trailer must register the tires with the trailer manufacturer. Your dealer will complete the tire data on your warrantee card. Your name, address, tire serial numbers, trailer serial number and date of purchase must appear on this card. Make sure the dealer completes the warrantee registration card and sends it to us.

TIRE PRESSURE.

Before using the trailer, check the tire pressure. The recommended pressure can be found on the side wall of the tire near the tire size. Always check the tire pressure when the tires are cold, at frequent, regular intervals. Under inflation can cause excessive sway at certain speeds and could cause loss of vehicle control. Over inflation can cause a tire to blow out, which is also very dangerous. Check tire pressure at frequent, regular intervals.

HITCHING UP. Place the trailer coupler over the ball on your car, and make sure the snap latch is all the way down and locked. Try to lift the trailer off the ball to make sure the hitch is securely fastened to the ball. Insert a 1/4” x 1 1/2” bolt and lock nut through the locking hole in the tongue to make sure the trailer doesn’t jump off. **Tongue weight should be between 250 and 300 pounds.** The ball should be 2” in diameter. You are responsible for making sure that the trailer hitch ball is secured properly to your car. Get some qualified help in mounting the hitch to the solid structure of your vehicle. Get help to install proper wiring.

SAFETY CHAINS. Secure the 2 safety chains to a solid bumper brace or through the hole normally provided in your hitch. Leave enough slack so that the trailer and car may turn without putting tension on the chains. Secure the end of the chain to itself with the locking device mounted on the end of the chain. This must be solid. Remove the nose wheel caster and raise the jack.

TOTAL WEIGHT. The weight of the boat, trailer and all other items cannot exceed 4200 pounds. The empty boat, without mast and cushions, weighs approximately 2600 pounds. The trailer weighs 720 pounds.

LIGHT WIRES. Our trailers come with a trunk harness (you will find it plugged into the trailer harness near the hitch). The exposed ends of the trunk harness must be wired into the light wiring of your car. The other end should be plugged into the trailer wiring harness. The wires on the trunk harness and trailer wiring are color coded as follows:

- White - Ground
- Brown - Running lights or tail lights
- Yellow - Left turn signal and brake light
- Green - Right turn signal and brake light
- Blue - Backup switch

Make sure you have a good ground or you won’t have lights. The light mounting brackets and ground wire must contact metal (you may have to scratch through the paint). Don’t use the trailer unless all lights are working. You must have the following:

- One red tail light at each rear corner of the trailer.
- One red clearance light as part of the above lights.
- One clear license plate illuminator.
- One amber clearance light mounted at the outboard rear corner of each fender. (These must be visible from the front.)
- One 3 lens gang light centered on the rear of the trailer.

You must have a red light at the extreme rear end of the load (normally on the end of the mast). Use a red flag in the daytime.

If your trailer has brakes, make sure the ground wire is connected to the trailer frame, and not to the moving portion of the brake actuator.

HYDRAULIC SURGE BRAKES. State laws concerning brakes vary. Check with your dealer or with your appropriate
state agency to determine whether or not trailer brakes are required in your area.

If your trailer is equipped with brakes, read the following carefully to make sure you understand their operation.

When you apply your car brakes, the trailer will try to push forward against the car. This push compresses the actuator mounted as part of the hitch, which applies force to the master cylinder, which creates hydraulic pressure to operate the trailer brakes. The harder you stop, the more hydraulic pressure you generate, and the more forcefully the brakes will be applied. The safety chain must be loose enough to permit free motion of the actuator assembly.

The surge brake system has a breakaway chain that connects to the car (this is not the same as the safety chain mentioned above). If the trailer gets loose from the car, the breakaway chain will cause the brakes to engage and try to stop the trailer. Make sure that this chain is fastened securely to the tow vehicle. It should have some slack so that it will not engage the brakes while the trailer is still connected to the car. The chain should be loose enough, even during turns, so that the breakaway lever is released (pointing all the way to the rear of the trailer) while the car and trailer are engaged. Check this each time before you use the trailer. No teeth on the breakaway lever should be engaged in the leaf spring. Accidental application of the lever will cause the trailer brakes to engage, drag, heat up and perhaps burn out. Do not use the emergency breakaway system as a parking brake.

The surge brake actuator linkage and the sliding mechanisms should work freely through the full range of travel. Do not mistake shock absorber resistance in the system for binding. Nylon bearings and the plated shafts do not normally need lubrication, but should be checked periodically. If you encounter erratic or unusual braking performance, investigate the cause immediately. The trailer should not push the tow vehicle, or try to jackknife during stops. The brakes should release when the trailer is pulled from a dead stop.

The surge brake system has an electronic disconnect, tied in with your car’s lights, that disengages the surge brakes when you try to back up.

TOWING THE BOAT AND TRAILER

TURNING. Don’t try to make really tight turns. Extreme turns, while going forward or backwards, may damage the actuator or other parts of the trailer or car.

Make sure that the trailer is towed in a level position. It should never be towed with the tongue lower than the rear of the frame, as this will cause the brakes to activate and stay on during normal towing.

Make sure your car brakes stay dry. They are less efficient when wet. Be extra careful just after ramp launching or recovery.

ATTACHING THE MAST SUPPORT WIRES TO THE BOAT

UPPER AND LOWER SHROUDS. The upper and lower shrouds should be connected to the chainplates (on both sides of the boat) with stay adjusters as shown below.

Side shrouds and stay adjuster channels

The upper shroud goes in the rear chainplate hole. Use 1/4” clevis pins and cotter rings, and mount them as shown. Put the clevis pins through the third hole in the strap as shown, and through the end hole in each channel. Note that the open side of the stay adjusters face each other. The cotter rings should go toward the inside of the chainplate, so the sheets won’t pull them off.

FORESTAY AND TURNBUCKLE. Attach the turnbuckle to the forestay. Adjust the turnbuckle so that it is 1/3 closed. Don’t attach it to the forestay chainplate at the front of the boat until the mast is raised.

RAISING THE MAST

ATTACH THE MAST TO THE MAST HINGE. Unbolt the mast from the forward rail, and unbolt it from the rear support. The 3/8” x 4 1/2” bolt and lock nut that holds the mast to the forward rail for trailering also serves as the pivot pin for the hinged mast step. With the rear of the mast supported by the mast carrier, move the forward end of the mast back to the hinge area. Insert the hinge pin (see below) and make sure the lock nut is on tight enough that the plastic seal engages the threads. (You will need two 9/16” end wrenches for this.) It is not necessary to run the nut down tight on the hinge plates. Just make sure the nut is on tight enough so that you can’t turn it with your fingers.

Mast hinge

Page 8
LIFTING THE MAST. Make sure all mast support wires except the forestay are connected to the mast and boat. Make sure that the mast wires are not entangled on the boat or trailer, and then raise the mast (below). This is best accomplished by standing on the cabin top, aft of the mast, and lifting the mast into position. Be careful not to hit a power line with the mast or rigging. You could be injured or killed.

Lifting the mast

The mast lifting task is made much easier if a second person stands on the foredeck and pulls on the forestay as the mast goes up. Look up to make sure the wires are not kinked on their attachment fittings, or tangled on the boat or trailer.

CONNECTING THE FORESTAY. After the mast is up, tie the jib halyard to the bow rail to keep the mast from falling backwards while you connect the forestay to the forward hole in the forestay chainplate (at the front of the boat). Make sure both ends of the line are secured to keep the mast from falling backwards. Insert the clevis pin that comes with the turnbuckle to secure the forestay to the chainplate. Then install the ring ding so the pin can’t come out. (Whenever you use a ring ding, make sure that it is turned fully onto the pin, and that the ring ding can then be rotated freely without coming out of the hole in the pin). Do not release forward pressure on the mast until the forestay is connected. If you have to move the boat after the mast is up, be watchful that you don’t run it into a power line.

RAISING THE MAST WITH THE OPTIONAL MAST RAISING SYSTEM

GENERAL. The following photo gives you an idea of how the optional mast raising system works.

A pair of wires keeps the mast from falling sideways as the mast goes up and down. A mast raising pole provides leverage to lift the mast. There is a fixed length line that goes from the top end of the pole to the mooring cleat at the front of the deck. This line keeps the pole from falling to the rear of the boat as the mast is lifted. Another line goes from the winch (mounted on the pole), through a pulley at the top of the pole, then down to a strap on the mast. The winch provides the power to easily lift the mast.

MAST RAISING WINCH. The following photo shows the brake winch that raises and lowers the mast. You crank it one way to raise the mast, and the other way to lower it. Always keep a firm grip on the winch handle when cranking.

MAST RAISING POLE. Connect the end of the mast raising pole to the forward holes in the mast base as shown below. Use a 3/8” x 4 1/2” bolt and lock nut.
The following photo shows how the pulley and forward line look in their position at the top end of the pole. Make sure the forward line has a good bowline knot securing it to the eye on the pole.

Pulley and forward line at top end of pole

SIDE SUPPORT WIRES AND WINCH LINE - ATTACHMENT TO MAST. After the mast pivot pin and front line are in place, with the top end of the mast resting in the mast crutch in the cockpit, connect the side support wires and winch line to the fittings on the mast (about 6’ up from the mast bottom). The assembly is shown in the following photograph.

Side support lines and winch line - attachment to mast.

The U shaped bracket is bolted to the mast with a 1/4” x 4” hex head bolt and lock nut. There is a 3” long loop tied into the winch line with a bowline knot. Do not untie this loop. The side support wires are captured on this loop. The loop attaches to the U shaped bracket on the mast with a 1/4” screw pin shackle. The lower end of the side wires attach to the loop on the lifeline posts on each side of the mast as shown below.

Side support lines - attachment to lifeline posts

The wires are attached to the loop on the lifeline post with 1/4” screw pin shackles.

The system works like this. The side support wires are short enough to cause a bend in the line that goes from the winch to the mast. When the winch line is pulled tight by cranking the winch, the line tries to straighten out, causing the side support wires to become very tight, giving lots of side support to the mast.

When the mast is up, and the wire forestay is attached to the front of the boat, the winch line is released, and the side support wires go slack, allowing easy removal. The side support wires are, in effect, self adjusting.

RAISING THE MAST. Before starting to crank the winch to raise the mast, look around to make sure all mast wires are clear and free of tangles. Again, make sure you are clear of all overhead power lines and that the mast won’t hit them when it goes up or when you have to move the trailer after the mast is up.

Look up at the rig to make sure that none of the loops in the wire ends are kinked or hooked over the stainless steel fittings to which the wires attach.

All of the comments in the section describing how to raise the mast manually still apply to raising the mast with the optional pole. The optional system simply reduces the physical effort involved in the mast lifting.

Begin cranking. The load will be heavier at first, but lighten as the mast goes up. Keep tension on the line as you start to crank the mast, otherwise the handle may unscrew.

Don’t stand under the mast or under the mast raising pole. If something lets go, or the mast falls, these are not the places to be.

After the mast is fully up, connect the bottom end of the forestay turnbuckle to the hole in the stainless steel fitting at the nose of the boat, as shown at the start of the next page.

Reverse the process to lower the mast. Remember, the winch is a brake winch, and you must crank the winch to lower the mast.

After the mast is lowered, the winch line is relaxed and the side support wires go slack. This allows easy removal of the mast hinge pin, which you need to do in order to move the base of the mast forward to the bow rail for trailering.
Don’t release tension on the mast raising line until the forestay is secure and the clevis pin and cotter ring are in place.

Tighten down on the turnbuckle so the rig is really snug. Then secure the turnbuckle barrel with its cotter pins. Make sure the cotter pins are spread to their full open position. Fold the pointed ends back so they won’t cut hands or tear sails. One nice thing about this setup is that you will not have to adjust the turnbuckle after it is once set. The winch provides sufficient power to stretch the rig enough to remove or install the pin. (This is the only disconnect that you have to make for raising and lowering the mast.).

LOWERING THE MAST. To lower the mast, reverse the process used for either the standard or optional system. First, remove the boom. Before you lower the mast, put the mast support in its holder in the cockpit. Otherwise the mast will come down on the cabin hatch and cause damage. Remember, the load gets greater as the mast gets lower. Be prepared. Get a good grip on the winch or mast. Don’t be fooled by the very small loads while the mast is close to vertical. When the mast is down, hold down on the base of the mast when you try to remove the hinge bolt. It will want to pop up when the bolt is released.

People have been killed or badly injured as a result of sailboat masts or support wires coming into contact with overhead power lines. Be watchful whenever you rig, launch, trailer or do anything else with your boat that might involve contact with power lines. If there is a threatening power line anywhere near areas where you sail, call or write to the power company and try to get them to move it or bury it. Notify us and we will also lean on them. Don’t remove the warning sticker on the mast. The repeated warnings may get boring, but power lines are life threatening risks.

ADJUSTING THE MAST SUPPORT WIRES.

MAST POSITION. The following drawing shows the proper angle of the mast in relation to the waterline. Make sure the tank is full and the boat is loaded so that the molded in waterline is parallel with the water. Use a level to establish a true vertical, and adjust the wires so that the mast is tilted to the rear as shown.

When properly tuned, all of the mast support wires should be quite snug.

FORESTAY. Take up the slack in the forestay by adjusting the turnbuckle.

UPPER SHROUD. Adjust the upper shrouds so that the mast is straight from side to side. Try to make them snug. The stay adjuster channels are designed as “verniers” to provide adjustments in 1/8” increments. This is accomplished by having the holes in the wire straps spaced at different intervals than the holes in the adjuster channels. As the wire is extended every 1/8”, a new set of holes will line up, allowing very precise tuning adjustments. A small screwdriver can be inserted in one of the sets of non-aligning holes to provide leverage to get tension on the wires while the clevis pin is being inserted in the proper holes. Use the 1/4” clevis pins and cotter rings to connect the channels to the straps fastened to the support wires. These channels are stronger than turnbuckles, better able to stand the bending loads resulting from raising and lowering the mast, and less likely to accidentally come loose.

LOWER SHROUDS. Adjust the lower shrouds as described above. Don’t get them too tight or the center of the mast will be pulled toward the rear of the boat.

ALTERNATE METHOD OF TENSIONING THE WIRES. With all the rigging in place, grip the upper shroud about 4 feet above the deck and pull inboard toward the center of the boat. The lower wire will go slack and allow another hole to be taken up in the adjuster channel. To adjust the upper wires, pull inboard on the lower wire. This method takes 2 people, and can get the rigging tighter than is desirable. You can also loosen the forward turnbuckle, make the necessary adjustment in the side wires, and then retighten the turnbuckle. The final tightening of the forward wire provides the final tightening of the entire rig.

MAST APPEARANCE AFTER PROPER TUNING. All support wires should be tight. Ideally, the mast should have about a 1” bow. In other words, the center of the mast should be about 1”
forward of a straight line drawn from the top of the mast to the base of the mast. The downwind wires will be somewhat slack when sailing hard. When sailing into the wind, the mainsail takes over the task of supporting the mast from the rear.

SECURE ALL COTTER PINS AND RINGS. Make sure all the cotter pins and rings are in place and the cotter pins are opened and secured. Once again, the ring dings should be fully on the pin, so they can be rotated freely 360 degrees without coming out of the hole in the pin. Wrap them with electrical tape so they can’t come loose.

INSPECTION OF THE RIGGING. It is a good idea to periodically inspect the mast and rigging. Look for broken strands in the wire bundles, signs of wear, and for kinks in the wire. Inspect the nicopress fittings to make sure the wire hasn’t slipped through the fittings. Replace any damaged wire.

RAMP LAUNCHING
Remove the trailer lights. Attach a 15’ line to the nose of the boat. Back the trailer into the water until the boat floats free. Do not untie the nose of the boat from the trailer winch until the boat is in the water. On a reasonably steep ramp, the boat could slide off the trailer before it gets near the water. This is a good way to look really stupid. If you leave the car for any reason, make sure the brake is well set, or the whole works may end up under water. This will look even worse.

Make sure the rudder and the outboard motor are secure in the full up position so they won’t hit the ground when launching and recovering the boat.

After launching, go inside to make sure there are no leaks. If you raise the mast after the boat is in the water, first fill the water ballast tank to give yourself a more stable platform.

THE WATER BALLAST SYSTEM

FILLING THE BALLAST TANK. The water ballast tank has a vent that allows air to escape when the tank is being filled. It is also used to allow air to enter as the tank is being emptied. Normally, this vent is sealed except when the tank is being emptied or filled. It is located directly under the hatch at the rear end of the forward V berth. Lift up the V berth cushion, remove the wood hatch cover, and the vent will be visible. It is surrounded by a fiberglass dam that helps keep water from sloshing out of the vent hole and into the bilge of the boat.

The vent hole also allows you to check the level of the water in the ballast tank. (There will be more on this subject later in these instructions.)

The following photograph shows the vent with its plug installed.

Vent hole and plug

FILLING THE TANK. To fill the tank, first open the air vent by removing the lever plug shown in the above photo. Then open the gate valve on the transom by pulling upward on the valve handle. This handle is located just to the left of the engine (as you face aft). Remember to close it after filling the tank. The following shows the approximate time needed to fill the tank with the boat in the water.

- With 50 hp Tohatsu and 70 lbs of fuel: 5 minutes
- With one 170 lb. person, no motor or fuel: 8 minutes
- With no motor, fuel or crew: 18+ minutes

The more weight in the boat, the faster it will fill, because the valve is more deeply submerged. With no motor or crew, the valve is about 40% under water, and the fill is really slow. However, there is almost always a crew member or a motor. Keep the weight aft to make sure the transom valve is under water.

You can empty the tank underway. With the vent and transom valves open, and the boat going about 7 mph, the tank will drain in about 4 minutes.

At a sloped standard launch ramp, with the boat on its trailer and out of the water, the tank will drain in 3 minutes. When you open the valve, get out of the way, because the water comes out like from a fire hose.

CHECKING THE LEVEL OF THE TANK. When the tank is full, and with the boat level, the water level in the tank is approximately 1” below the vent hole. **If it is more than 1” down from the vent hole, the boat may not be self righting. Do not sail it.**

There is a 16” long clear plastic tube in the rig box. Stick this in the vent hole, push it to the bottom of the boat and put your finger over the top end of the tube. Keep the tube top sealed tight and lift out the tube. The water level in the tank will show in the tube.

CLOSING THE WATER VALVE AND AIR VENT. Re-install the lever plug in the vent hole. Make sure it is tight, or the water ballast will spill into the boat when the boat leans over. There is an adjustment nut at the bottom of the lever plug. If the plug is too loose, hold the metal parts at the top and turn the rubber. The
rubber portion of the plug will become fatter or skinnier as the rubber is rotated. Adjust it so that it must be forced into the hole. Then, when the lever is pressed to the horizontal position, it will really grip the hole and stay put.

Close the transom gate valve by pushing down on the handle. Make sure the valve is closed tight, otherwise water may be sucked out by the forward motion of the boat and ballast will be lost, making the boat capsizable.

CHECK TO MAKE SURE THE VALVE AND VENT ARE SEALED. While you are sailing and the boat is tipped, check the air vent and transom valve to make sure there are no leaks. The more the boat leans over, the more water pressure will be on the vent and valve, making a leak more likely. Watch it closely. Once again, always make sure the transom valve is closed tight, or you may lose water ballast.

It is possible to test the watertightness of the transom gate valve by pulling the boat out of the water on its trailer with the tank full and valve closed. Check to see if it leaks. Do this frequently, preferably every time you sail the boat. Avoid opening the vent hole in choppy water or when the boat is leaning, because the water can surge around in the tank and spill out into the boat. The only time the valve and vent hole should be open is when you are emptying or filling the tank, or when the boat is out of the water. Do not leave the valve and vent hole open and unattended.

PREVENTION OF ALGAE IN THE BALLAST TANK. If you leave the ballast tank full of water for long periods, drop in a few swimming pool chlorine tablets to prevent a bad case of algae. Be cautious when handling the chlorine tablets. Follow the directions on the chlorine tablet container very carefully. Don’t put chlorine in the galley water tank. Don’t leave water in the tank in freezing weather. Damage could result.

RETURN THE BOAT TO ITS TRAILER
Simply drive the boat onto its trailer. Try to steer the nose into the V on the front of the trailer. Leave the outboard running to hold the boat against the rubber V pad, and go forward to secure the nose to the trailer.

Before pulling the boat out of the water, winch the nose to the trailer to prevent the boat from sliding backward off of the trailer. Make sure the boat is centered on the trailer.

If you pull the boat out of the water and find that the nose of the boat is not quite in its rubber pad, drive the car and trailer forward at low speed and tap the brakes. The boat will easily slide into the rubber block. This saves having to overload the winch and line to move the boat. Don’t go too fast or make a real hard stop, or the boat may end up in or on your car. Carefully store and secure all lines and mast support wires to avoid entanglement in the trailer wheels while towing.

EMPTYING THE BALLAST TANK
This section describes emptying the tank when the boat is being pulled out of the water at a launch ramp. Emptying the tank when the boat is in the water is described in the Powering section.

To drain the tank, make sure both the vent and the transom valve are open. Remove the water tank vent plug inside the boat. Pull the boat slowly out of the water, and the water ballast will begin to drain out of the boat and into the ocean. As the boat comes out of the water, the water level in the tank will be higher than the water level surrounding the boat. The water in the tank will try to seek the level of the surrounding water, and the tank will drain.

If the ramp is steep or slippery, or if your car is feeble, it may not be able to pull the boat and the 1000 lbs of water up the ramp. If so, move forward just a small amount and wait for some water to drain. Then move forward some more, and let more water drain. Keep inching forward until the water is gone. In this manner, you will never have to pull out the entire 1000 lbs in one swoop.

Do not try to tow the boat with water in the tank. The trailer was not designed to carry the extra 1000 lb load. Trailering with the water ballast in the tank will overload the trailer and probably your car. When trailering, leave the valve open so all the water can slosh out. There is no sense in carrying around unnecessary water.

CONNECT THE BOOM TO THE MAST
The finished assembly is shown below. Use a 1/4” x 1 1/2” bolt and lock nut to secure the boom to the mast bracket.

Mainsheet attached to traveller
The upper end of the mainsheet is attached to the boom as shown below.

Mainsheet attached to boom

The mainsheet threads its way through the pulleys as shown in the following drawing.

Mainsheet

MAINSAIL. Feed the lower rear corner of the mainsail into the open slot in the front end of the boom and pull it along the full length of the boom as shown below.

Feeding mainsail onto the boom

Connect the main halyard snap shackle to the top of the sail, and start feeding the rope on the leading edge of the sail into the spread portion of the mast.

Attaching the mainsail to the mast

BATTENS. Insert the 4 fiberglass battens in the pockets in the rear edge of the sail as shown. The short batten goes in the top pocket. The other three battens are of equal length. Make sure that the rear edge of the batten is tucked into the pocket sewn into the rear edge of the batten slot. If it is not secure, the batten will work its way out of the sail when you are sailing.

Batten, partially inserted

With the boat pointed directly into the wind, hoist the sail while guiding the rope into the slot in the mast. The ring in the front lower corner of the sail attaches to the stainless steel ears on the gooseneck with a 1/4” x 1 1/2” bolt and lock nut.

Secure the end of the main halyard to the mast cleat on the left-side of the mast (when looking forward) with a trucker’s hitch, as shown. First make a loop in the line about 2’ above the cleat.

Trucker’s hitch, top loop
Wrap the loose end of the line around the cleat just once and then pass it through the loop that you made above the cleat.

Trucker’s hitch, complete

When you pull down on the loose end, you will get a 2 to 1 power advantage. (For every pound of pull you put on the loose end, you will get a 2 pound pull on the halyard). When the mainsail is up, secure the loose end to the cleat as shown at the beginning of these instructions. The front edge of the sail should be stretched tight, but not so tight that vertical wrinkles appear in the front of the sail.

Run the rope at the rear end of the boom through the sail and tie the line tight to the cleat at the end of the boom.

Jib, forward lower corner

Clip the jib to the forestay with the bronze snaps on the sail, and tie the jib sheet.

Mainsail attachment, lower rear corner

For light winds, the sail should be full and somewhat baggy along the boom. As the wind increases, the sail can be flattened for better efficiency by tightening the halyard and boom end line (outhaul). A common error is not having the halyard tight enough. However, don’t get it so tight that the sail has long vertical wrinkles along the mast.

Jib sheet

When the jib is raised, use a trucker’s hitch. Get the halyard really tight. Secure the halyard to the left (port) cleat on the mast. The jib sheets go through the low profile blocks that slide on the jib tracks on the cabin top. Make sure the blocks are pinned securely so they don’t fly off the ends of the tracks. The lines then go directly to the jib winches at the rear of the cabin top. The position of the blocks on the tracks is very important for good performance. When you turn the boat into the wind, if the top portion of the jib collapses and loses its shape before the bottom part of the sail, move the blocks forward. If the bottom half of the sail collapses first, move the blocks to the rear.

Jib sheet blocks

JIB (FORWARD SAIL, OPTION).

Attach the forward corner of the jib to the rear hole in the forestay chainplate, using shackles as shown.
There should be no scallops or sagging between the clips on the jib sail. A loose leading edge is a very common error and hurts the boat’s windward performance.

GENOA (OPTION)

The genoa is similar to the jib, except that it is longer along the base. It adds a lot of power and is particularly effective in light winds. The genoa is installed and handled just like the jib, except the genoa sheets go to the spring mounted standup blocks on the coaming aft of the cabin as shown in the following photo. The lines go outside of the shrouds that hold up the mast, and outside the cockpit lifelines.

REducing the area of the main-sail (reefing)

Don’t hesitate to reef when it blows hard. The boat will be more manageable and usually faster. To reef, release the mainsail halyard and lower the sail until the reefing eye on the front edge of the sail (about as high on the sail as the first batten) can be hooked into the hook that is attached to the gooseneck. Then re-tighten the halyard. Release the line that holds the rear end of the sail to the boom. Pass the line through the reefing eye on the sail (near the bottom batten), around the boom, back through the reefing eye, then to the cleat at the end of the boom.

Daggerboard

The daggerboard slides up and down in a watertight compartment (daggerboard trunk) just to the rear of the mast.

It is raised and lowered by a line attached to the top of the board. The line then passes through a pulley that straddles the trunk, through a cheek block on the cabin top, and then back to the winch and cleat at the rear of the cabin. The line is shown below.

The daggerboard should be fully lowered when sailing into the wind, to keep the boat from sliding sideways. It should be raised completely for sailing downwind. When sailing at right angles to the wind, leave the board about half way down. At low speed under power, the boat steers a lot better when the board is about 1/4 down. When powering over 6 mph, the board must be all the way up. At high speed, water may splash out the top of the trunk. Lower the board an inch, and it will stop.

Never let the top of the board go more than 57” below the level of the deck. If it goes lower, it will not have adequate support in the hull, and may be damaged. There is a knot in the lifting line, and a large washer ahead of the knot that will come to rest against the cheek block when the board is down as far as it should go. Do not move the knot. If you replace the line, make sure the knot is in the same exact position. There is also a safety line that prevents the top of the board from going more than 57” below the deck level. Do not remove this line.

To remove the board, lower the mast and remove the mast from its mast step. The board can be lifted straight up and out.

The board has a few holes in the bottom and top that will let it fill completely with water. This eliminates its bouyancy and improves the stability of the boat. When raising the board, do it slowly to allow water to drain out and make it easier to retract. With the board full of water, it is heavy.

Rudders

The rudders are lowered by pulling on lines that protrude from the deck near the mooring cleats at the back of the boat. They are raised by pulling on the lines that are secured to the rear end of the
rudders. There are cleats near the lines to secure the rudders either in the up or down positions. When you are steering with the rudders, make sure they are fully down and well secured. If the rudder blades angle back, the rudder area moves aft of the pivot point, and the loads on the steering system increase dramatically. It is also possible to have the rudders too far forward. If the center of pressure is ahead of the pivot point, the steering wheel will pull to the right or left (much like a steering wheel on a car behaves when you are backing up). Adjust the rudders to the position where there are only small loads on the steering wheel.

There is a small adjustment screw on the leading edge of each rudder fitting. Turn the screw to adjust the fore and aft angle of the rudder blades.

If steering loads are heavy, first make sure that the rudder blades are really pulled down tight against their stops. If the blades stick out from the rear of the boat, steering will really be difficult.

After you are sure the blades are fully down, turn the screw clockwise to cause the rudder to angle forward. Adjust it so that there is very little load on the steering wheel. When underway, pull hard on the rudder line to once again make sure that the blades are down and against their stops.

If the rudders are angled too far to the rear, and there is too much pressure on the rudders, you can damage the steering system.

If the steering cable system becomes inoperative, you can remove the cable from the tiller cross bar and steer by pushing and pulling on the tiller cross bar or on the motor pushrod that protrudes from the deck near the motor well. (This is awkward, but you can still get home.)

The following photo shows the rudder secured in the up position, ready for powering or trailering.

Secure both lifting and lowering lines to keep them from getting caught in the outboard motor’s propeller. Tighten the rudder pivot bolt (3/8” x 2 1/2” bolt and lock nut) tight enough to prevent sideways movement of the rudder in the rudder head, but loose enough to allow the rudder to be moved up and down easily. Watch for wear on the rudder lines, and replace them as necessary.

The following photo shows the rudders in the full down position, ready for powering or trailering.

If the rudders are angled too far to the rear, and there is too much pressure on the rudders, you can damage the steering system.

If the steering cable system becomes inoperative, you can remove the cable from the tiller cross bar and steer by pushing and pulling on the tiller cross bar or on the motor pushrod that protrudes from the deck near the motor well. (This is awkward, but you can still get home.)

The following photo shows the rudder secured in the up position, ready for powering or trailering.

Secure both lifting and lowering lines to keep them from getting caught in the outboard motor’s propeller. Tighten the rudder pivot bolt (3/8” x 2 1/2” bolt and lock nut) tight enough to prevent sideways movement of the rudder in the rudder head, but loose enough to allow the rudder to be moved up and down easily. Watch for wear on the rudder lines, and replace them as necessary.

The following photo shows the rudders in the full down position, ready for powering or trailering.

If the rudders are angled too far to the rear, and there is too much pressure on the rudders, you can damage the steering system.

If the steering cable system becomes inoperative, you can remove the cable from the tiller cross bar and steer by pushing and pulling on the tiller cross bar or on the motor pushrod that protrudes from the deck near the motor well. (This is awkward, but you can still get home.)

The following photo shows the rudder secured in the up position, ready for powering or trailering.

Secure both lifting and lowering lines to keep them from getting caught in the outboard motor’s propeller. Tighten the rudder pivot bolt (3/8” x 2 1/2” bolt and lock nut) tight enough to prevent sideways movement of the rudder in the rudder head, but loose enough to allow the rudder to be moved up and down easily. Watch for wear on the rudder lines, and replace them as necessary.

The following photo shows the rudders in the full down position, ready for powering or trailering.

If the rudders are angled too far to the rear, and there is too much pressure on the rudders, you can damage the steering system.

If the steering cable system becomes inoperative, you can remove the cable from the tiller cross bar and steer by pushing and pulling on the tiller cross bar or on the motor pushrod that protrudes from the deck near the motor well. (This is awkward, but you can still get home.)

The following photo shows the rudder secured in the up position, ready for powering or trailering.

Secure both lifting and lowering lines to keep them from getting caught in the outboard motor’s propeller. Tighten the rudder pivot bolt (3/8” x 2 1/2” bolt and lock nut) tight enough to prevent sideways movement of the rudder in the rudder head, but loose enough to allow the rudder to be moved up and down easily. Watch for wear on the rudder lines, and replace them as necessary.

The following photo shows the rudders in the full down position, ready for powering or trailering.

If the rudders are angled too far to the rear, and there is too much pressure on the rudders, you can damage the steering system.

If the steering cable system becomes inoperative, you can remove the cable from the tiller cross bar and steer by pushing and pulling on the tiller cross bar or on the motor pushrod that protrudes from the deck near the motor well. (This is awkward, but you can still get home.)

The following photo shows the rudder secured in the up position, ready for powering or trailering.

Secure both lifting and lowering lines to keep them from getting caught in the outboard motor’s propeller. Tighten the rudder pivot bolt (3/8” x 2 1/2” bolt and lock nut) tight enough to prevent sideways movement of the rudder in the rudder head, but loose enough to allow the rudder to be moved up and down easily. Watch for wear on the rudder lines, and replace them as necessary.

The following photo shows the rudders in the full down position, ready for powering or trailering.

If the rudders are angled too far to the rear, and there is too much pressure on the rudders, you can damage the steering system.

If the steering cable system becomes inoperative, you can remove the cable from the tiller cross bar and steer by pushing and pulling on the tiller cross bar or on the motor pushrod that protrudes from the deck near the motor well. (This is awkward, but you can still get home.)

The following photo shows the rudder secured in the up position, ready for powering or trailering.

Secure both lifting and lowering lines to keep them from getting caught in the outboard motor’s propeller. Tighten the rudder pivot bolt (3/8” x 2 1/2” bolt and lock nut) tight enough to prevent sideways movement of the rudder in the rudder head, but loose enough to allow the rudder to be moved up and down easily. Watch for wear on the rudder lines, and replace them as necessary.
SELF-RIGHTING CAPABILITY

With sails rigged to the mast and boom, the water ballast tank full, and the masthead pulled to the level of the water, the boat, when released, should return to an upright position. With virtually any sailboat, it is possible for the belly of the sails to trap enough water to hold the boat down on its side if the sheets (sail control lines) are not released. In the event of a knockdown, release all sheets to prevent this possibility.

In rough seas, it is possible for waves to enter the cabin through hatches if the boat is held on its side. While sailing in rough weather, it is advisable to keep all hatches closed and secured.

FOAM FLOTATION

With the normal gear and crew, the MacGregor 26 has sufficient solid foam flotation material to keep the boat afloat in the event the cabin fills. When completely filled with water, the boat will be relatively unstable, and can roll over.

Do not remove the foam flotation blocks from the interior of your boat under any circumstances.

POWERING

The boat is designed for an outboard motor of no more than 50 horsepower. Do not use a larger engine.

Have the outboard installed by an experienced installer. The motor must be installed on the center of the transom, and clamped or bolted securely. Any bolts through the transom should be well sealed to prevent leakage. Don’t locate these bolts below the waterline.

Follow the manufacturer’s instructions to the letter when installing the engine.

We offer a motor linkage that connects the rudders to the engine. It causes the engine to turn with the rudders. It is shown below.
bar together should be loose enough to allow the bar to pivot as the engine is raised up and down.

When powering, the engine should be connected to the rudders with the linkage bar. With the engine linked to the rudders, the rudders will still turn when the engine is turned, but the blades. when raised, will be waving harmlessly in the air, which is fine. With the rudders down at high speed, you run the risk of bending the rudder heads, or overloading and damaging the steering system, or contributing to capsizing. You also run the risk of the rudders hitting something and being damaged. With rudders up, the boat steers fine at the higher speeds with just the engine. Also, the rudders create a lot of unnecessary drag, and can knock a few miles per hour off the top speed. Pull them up!

When powering at 6 mph or less, you can steer with the rudders down. With the engine and rudders linked and the rudders down, control at low speed is as good or better than any other boat. At low speed, you will have even better steering control if the centerboard is about 1/4 down. Remember to pull it all the way up when you are powering faster than 6 mph.

When under sail, you can keep the rudders and engine linked with the engine retracted, with only a slight increase in the load on the steering wheel.

If you are racing, or want less load on the wheel, you can disconnect the retracted engine so it won't turn with the rudders. This takes a relatively small load off of the wheel. To keep the engine from flopping from side to side as the boat leans, you can disconnect the linkage bar from the tube coming out of the hull, and drop it over the stud protruding up from the deck near the motor well.

The boat will be a little faster under power with the ballast tank empty, but you will be a lot safer with the ballast tank full. Please reread the section on stability. This information is really important.

It is possible to drain the ballast tank while moving under power. You have to be going about 7 mph. Open the vent plug and the valve on the transom. The nose of the boat will be high and gravity will drain the tank.

When the tank is empty, immediately close the vent plug and the transom valve, or the tank will again fill with water. Always make sure the vent and valve are closed except for times when the tank is emptying or filling. (At dockside, a hose end siphon inserted in the vent hole will empty the tank in about 12 minutes.)

When powering at any speed over 6 mph, make sure the daggerboard is all the way up. At high speed, with the board down, the board will create lifting forces to the right and left as the boat moves through the water, tending to make it unstable. This could possibly cause capsizing. Check frequently to make sure the board stays up during powering. This is important.

If the boat is loaded with a lot of weight on one side, it may capsiz. Make sure the weight in the boat is placed so that the boat remains reasonably level when underway when traveling in a straight line.

Do not power over 6 mph with the sails up. If you are going 20 miles per hour in calm air, and the boat is turned, it will slide sideways and you will now have a wind of 20 mph filling your sails. The result could be a knockdown or capsizing.

Make sure the mast support wires are tight when powering fast. The pounding and slamming can otherwise make your mast really rattle around.

The turning radius at high speed is relatively large, so allow yourself lots of room.

Most outboard motors have a kill switch that shuts off the engine if you fall out of the boat. This involves a cable that attaches to the switch and to you. It is an excellent safety feature, and should be used.

BOAT MAINTENANCE

LEAKS. It is a good idea to check the water tank, cockpit, outboard well and galley vents and drains to make sure all connections are tight and waterproof. Check the water ballast valve for leakage as described earlier. Pull the boat out of the water frequently with the water tank full. If anything is leaking, you will see water coming out.

INSPECTING THE HULL AND DECK. Periodically inspect the boat for cracks, delaminations, blisters or signs of impact damage. Gel coat, the outer cosmetic finish, is fairly brittle and occasionally cracks and crazes where it is stressed. This is normally cosmetic only. If crazing appears, check to see if the fiberglass itself, and not just the colored gel coat, is damaged.

INSPECTING MAST SUPPORT WIRES AND LIFELINES. The wires should be checked frequently to make sure there are no broken strands. If you find a broken strand, replace the wire immediately.

INSPECTING HARDWARE. Also check all bolted-on hardware to make sure everything is tight and leak proof. Squirt the boat with a hose and look for leaks. If one is found, make sure the bolts are tight and all joints are sealed.
EXTERIOR FINISH. The fiberglass finish should be protected in the same manner as an automobile finish. An occasional polishing and waxing (with any good quality automotive polish and wax) will keep the surface in excellent condition. If the boat is left in the water (either fresh or salt water), apply a coat of top grade anti-fouling bottom paint with an 18 mil thick (.018") epoxy undercoat. Without good bottom paint and epoxy primer, the white gel coat exterior surface may blister.

WIRING DIAGRAM

TRAILER MAINTENANCE

GENERAL. A good periodic inspection and clean up can add years to the trailer’s life.

Frequently check the trailer to insure that all bolts and nuts are tight, that all welds look solid, and that there are no cracks or bends in the trailer structure. Inspect tires for wear, cuts, bad bruises.

Replace tires if they become worn or damaged.

All of the maintenance and operation procedures mentioned are very important as there are no warranties of any kind on brake systems for boat trailers.

Always hose the trailer down with fresh water after immersing in salt water. Salt water is very corrosive, and removing it will add years to the life of the trailer.

AXLE MAINTENANCE. Buy a small grease gun for the hubs and use a high quality multi-purpose non-fibrous grease, similar to the grease used in automobile wheel bearings. Put in enough grease to move the spring loaded piston about 1/8” outward from its seated position. Check the lubricant level in the hub by pressing the edge of the spring loaded piston. If you can move or rock the piston, the hub has sufficient grease. If it cannot be moved, add grease with the grease gun. Do not overfill.

TRAILER LIGHT CARE. All lights should be removed before putting the trailer in the water.

SURGE BREAKS. Please read the surge brake instructions that are included in the rig box.

LIMITED WARRANTY

MacGregor Yacht Corp. makes the following warranty to purchasers:

SAILBOATS AND SAILBOAT PARTS AND EQUIPMENT.
For a period of two years from the date of sale to the first use purchaser, MacGregor Yacht Corp. will, through its selling dealers, repair or replace any sailboat part or sailboat equipment manufactured by MacGregor which is proven to MacGregor’s satisfaction to be defective by reason of faulty workmanship or material.

TRAILERS AND TRAILER PARTS AND EQUIPMENT.
For six months from the date of sale to the first use purchaser, MacGregor Yacht Corp. will, through its dealers, repair or replace any trailer part or trailer equipment manufactured by MacGregor which is proven to MacGregor’s satisfaction to be defective by reason of faulty workmanship or material.

THIS WARRANTY SHALL NOT APPLY TO THE FOLLOWING:

(1) All items determined by MacGregor to be the responsibility of the dealer in launching or otherwise handling or preparing a new boat or vessel.

(2) All items installed by the dealer or anyone else other than MacGregor.

(3) Any failure resulting from lack of maintenance, normal wear and tear, negligent operations or maintenance. Negligent operation includes, but is not limited to, failure to properly and completely fill the water ballast tank when sailing, failure to empty the water ballast tank before trailering, failure to heed adverse weather warnings, and failure to use care when operating the boat near sources of electrical power.

(4) All accessories or equipment not manufactured by MacGregor. Any warranty furnished by the manufacturer, if possible, will be passed on to the boat owner.

(5) Trailer brake systems and trailer lighting systems.

(6) Exterior paint and gel coat finishes. Although we use the finest finishes available in the industry, they cannot be warranted because they are affected by climate and use conditions beyond the control of MacGregor Yacht Corp.

(7) Any other person than the first use purchaser of the boat.

(8) Any boat or part manufactured by MacGregor which shall have been altered in any way so as to impair its original characteristics.

The foregoing warranties are made in lieu of all other warranties, obligations, liabilities, or representation on the part of MacGregor, and the purchaser waives all other warranties, guaranties, or liabilities, expressed or implied, arising by law or otherwise, including without limitations any liability of MacGregor for consequential damages.

The purchaser should understand that the dealer is not an agent of
MacGregor Yacht Corp. and MacGregor does not authorize the dealer or any other person to assume for MacGregor Yacht Corp. any liability in connection with such warranty or any liability or expense incurred in the replacement or repair of its products other than those expressly authorized herein.

MacGregor reserves the right to improve its products through changes in design or material without being obligated to incorporate such changes in products of prior manufacture.

FOREIGN CUSTOMERS. The foregoing limited warranty shall be null and void (and MacGregor Yacht Corporation expressly disclaims all warranties of any kind, express or implied, including the implied warranty of merchantability and fitness for a particular purpose), if a foreign customer (in other words, a retail customer not located in the United States or Canada) purchases a MacGregor boat and/or trailer directly from a United States dealer of MacGregor Yacht Corporation rather than from an authorized foreign dealer of MacGregor Yacht Corporation.

The terms of the above paragraph are necessary because of the extremely complex legal and certification requirements of most foreign countries. It is essential for our protection and for the protection of the customer that foreign sales and service are handled by authorized foreign dealers who thoroughly understand the complex rules of the countries in which they sell, and who can modify the boats to meet these requirements.

DEALER’S RESPONSIBILITY. The processing of claims against the transportation company for any damage occurring during shipment, or by deliberate act of vandalism or by normal intransit hazards shall be the dealer’s responsibility. MacGregor Yacht Corporation’s responsibility for safety against damage to the boat ceases at the time the boat leaves the MacGregor Yacht Corp. facility; thereafter responsibility is either that of the common carrier or the dealer.

The dealer must fill out and return to MacGregor, within ten days after the boat is sold to a retail customer, the attached Warranty Registration Card.

It is further the responsibility of the dealer to furnish guidance and information to the purchaser on matters pertaining to service and maintenance during the warranty period, and in addition to process any claims under the warranty to MacGregor Yacht Corp. The dealer is responsible for making sure that the owner receives the Owner’s Instructions and understands all information contained therein.

OWNER’S RESPONSIBILITY. The Owner’s Instructions, as well as any instructions furnished with any accessories installed on the boat, shall be placed in a large envelope and remain aboard the boat. Purchasers should make special effort to make sure that this literature is delivered to them by the dealer or MacGregor Yacht Corporation. Careful attention to these instructions will add many years to the life of the boat and equipment. It is understood that all matters of service are handled with the selling dealer. Purchaser should notify his selling dealer regarding any problems under the warranty. The above warranties will be in effect only if such part is promptly returned to the dealer with a sum sufficient to pay transportation charges to the MacGregor plant. The dealer shall be given an opportunity to supply parts needed for all repairs for which a claim is to be made.

The purchaser agrees to use the boat in a reasonable and safe manner. It is necessary for the owner or operator to use extreme caution when operating the boat in severe weather, or when trailering and raising and lowering the mast near power lines or sources of electrical power (contact between a power line and the mast or rigging could cause injury or death), and when preparing the boat for trailering. The purchaser must use care to assure that the boat is not sailed unless the ballast tank is completely full and the valve is closed and sealed. The purchaser must familiarize himself with all information contained in the Owner’s Instructions, particularly warnings contained in pages 1, 2, 3 and 4.
THE MOST IMPORTANT THING YOU MUST KNOW IS THE DIRECTION FROM WHICH THE WIND IS BLOWING. Program someone to ask you, every 2 minutes “where is the wind coming from?” You must point to it instantly, and be right. Put a Windex wind vane at the top of the mast, and keep your eye on it. If you don’t know wind direction, you will look sort of stupid when trying to use the wind as your engine. There are clues everywhere; flags, smoke, dust, moving clouds, ripples on the water, other sailboats, and blowing debris. Above all, you can feel the wind direction on your face. Turn toward the wind. When you are aimed straight at it, you will feel it evenly on both ears, cheeks, hair, etc. Be aware.

SAILING DOWNWIND. Sailing with the wind is easy. Just aim the boat and the wind will blow you along. A boat sailing downwind looks like this.

Sailing downwind

This is no more complex than letting a balloon blow with the wind. (Except that you can steer.) You can sail downwind, slowly, even without sails. (This is good for docking.)

Just get the sails out there at right angles to the wind. You control the angle of the sails to the wind with the sheets (the lines that connect to the rear of the jib and to the rear of the boom). The wind pushes on the sails, and the boat moves. Notice the turbulence behind the sails, just like the turbulence behind a truck as it speeds along. If the wind gets on the wrong side of the mainsail, it can slam over fast and hard, just like the wind will slam a door if it gets on the wrong side. This is called jibing. Be careful. More on this later.

SAILING ACROSS THE WIND. This is a whole different act. Notice, in the next set of drawings and photos, that the wind is now flowing smoothly across the sails, much like the wind moves across the wing of an airliner.

Sailing across the wind

Basically, the sails are diverting wind from its original direction toward the rear of the boat. Every pound of wind that is deflected toward the rear of the boat gives a forward push to the boat. Actually, the wind gives a push both forward and sideways (making the boat lean). However, the rudder and the daggerboard keep the boat from sliding sideways, so it squirts forward, much like a watermelon seed shoots out forward when you squeeze it between your fingers.

SAILING INTO THE WIND. This is just like sailing across the
wind, except that the sails are pulled in closer to the centerline of the boat, and you are now trying to sail as close into the wind as you can. This is tougher to do, and the boat won’t go as fast as when sailing across the wind. The following drawing shows the boat sailing toward the wind. This is as close into wind as you are going to get.

Sailing into the wind

Notice the smooth wind flow across the sails, and the lack of turbulence. Wind is being properly diverted toward the rear of the boat, and like the blast of air coming out of the rear of a jet, pushing the boat forward and sideways. More of the force is now sideways, so the boat will tend to lean more, but it will still squirt forward, since the daggerboard is keeping it from going sideways.

SAILING STRAIGHT INTO THE WIND. You can’t. The sails will flap like flags, divert no wind, and you will just sit there, frustrated, dead in the water. This is being in “irons”.

Zig zagging (tacking) into the wind

THE FIRST DAY OUT. Launch the boat on a nice day with a light breeze. There should be just enough wind to move the boat around. (You have to be moving if you expect the rudder to work.) Fill the ballast tank. Make sure the rudders and daggerboard are all the way down. Start the engine. Power slowly out to the middle of a calm body of water, where there is nothing to bump into, point into the wind, and put up the mainsail. Keep the engine running slowly, moving the boat about 2 mph. With the engine running and moving the boat forward, try to duplicate what you see in the above diagrams. Sail with the wind, across the wind and as close into the wind as you can go. Blunder around like this for a while, trying to match the angle of the boom to the wind as you see in the diagrams. After a half hour or so of this, you will get a good feel of what works and what doesn’t. If you screw up, or the sails shove the boat in a direction that you don’t wish to go, overpower the sails with the engine. Use reverse if you have to stop. In a tug of war between the engine and the sails in moderate winds, the engine will win.

Then raise the jib. Remember that the jib control line is pulled in on the side of the boat away from the wind. The line going to the other side is left loose. As you zig zag into the wind (tacking), you will have to release the jib line (sheet) from one side and pull it in on the other. The mainsail control line (mainsheet) takes care of itself. You don’t have to reset it each time you turn through the direction from which the wind is blowing.

STOPPING THE BOAT. If you are sailing, with the engine off, you can always stop the boat by turning into the wind and letting go of the jib control line and the mainsail control line. When you do this, the wind pressure is off of the sails, the boat will coast a few more boat lengths and come to rest. This also is good for docking when the dock is upwind. A motor is better.

HOW DO YOU KNOW IF THE SAILS ARE SET AT THE PROPER ANGLE TO THE WIND? There are some simple tricks that are used by the experts. When sailing in the same direction as the wind (called “running”), just let the sails out until they are at right angles to the wind. You are trying to catch as much wind as possible. Unfortunately, the mainsail blocks the wind from hitting the jib, so the jib will just hang, unless you can hold it out on the opposite side of the mainsail, as shown below. This adds sail area, but it only works when the wind is coming from directly behind the boat.
When sailing at right angles to the wind (called “reaching”), pull in the mainsail control line (mainsheet) and the jib control line (jibsheet) until the wind completely fills the sails.

If the sails are not pulled in far enough, the fabric near the leading edge will flutter and ripple. This is the result of the wind hitting the sail on the wrong side and forcing the fabric toward the upwind side. This fluttering is shown in the following drawing.

Keep pulling the mainsheet in until the fluttering just disappears, and the sail forms a smooth curve from the mast to the rear edge. Unfortunately, the sail will not tell you if it is pulled in too far; it will still look smooth and full, but will not move the boat well. Let the mainsheet out until the fluttering and bubble just disappear. This is now the perfect sail setting. Because the wind is always changing, you have to keep making this test for top performance.

There is another neat trick to let you know when the mainsail is pulled in too far. Secure a 7” long piece of yarn near the rear end of every batten pocket. Use a large needle to push the yarn through the sail.

Trimming the jib is just about the same as trimming the mainsail. The jib, however, comes with built in streamers (called “telltales”) to make it easy. The streamers are about 12” in from the front edge of the sail. There are 2 sets, evenly spaced up the sail.

When the sails are in too far, the yarns will curl around the backside of the sail. If they curl, gently let out the mainsail until they stream out straight and not try to hide behind the sail. The yarns tell when the sail is in too tight (which really slows up the boat and causes it to lean over more), but they do nothing to tell you when the sail is let out too far.

Even if you point the boat straight into the wind and the sail is doing an impersonation of a flapping flag, the yarns will stream nicely to the rear. You have to watch for the fluttering and balloonning to appear at the front edge of the mainsail. Pull it in until the fluttering disappears. So, the fluttering tells you if it is out too far, and the yarns tell you if it is in too far.

When the streamers on the downwind side are going around in circles and not flowing to the rear, the sail is not pulled in tight enough. Always trim the jib first, then the mainsail, since the flow off the jib affects the mainsail trim.

If the streamers on the windward side of the sail are dancing around and not flowing to the rear, the sail is not pulled in tight enough. Always trim the jib first, then the mainsail, since the flow off the jib affects the mainsail trim.

You always have two ways to get the angle of the sails to the wind just exactly right. You can pull the ropes to change the sail angle, or you can keep the ropes as they are and steer in a new direction. The latter is easier on the arms. You may not get exactly where you want to go, but you will be going a lot faster.

When you are sailing as close as possible into the wind, secure the sails and adjust the angle of the sails to the wind by steering the boat into or away from the wind.
When sailing across the wind or into the wind, try to sail a constant leaning (heeling) angle. If it leans too much, sail into the direction from which the wind is blowing (called "heading up"), relieving some pressure on the sails. If the boat starts to stand up straighter, steer away from the wind direction (called "heading down"). The wind will hit the sails at more of an angle and cause the boat to lean more, and you will get more power. This helps to keep the sails at the proper angle to the wind. A leaning (heeling) angle should look about like this when going into the wind in an 8 mph wind.

Proper leaning angle in 8 mph wind

APPARENT WIND. This is tricky, but important. The wind that the boat feels is actually two winds. The first is the wind that moves across the water, that creates the waves and makes flags stream downwind. (This is called the true wind). The second wind is the wind produced by the speed of the boat. If there is no true wind, and your outboard pushes the boat at 5 mph, you and the boat will feel a 5 mph wind coming right at the front of the boat. (This is called the apparent wind).

If there is a 10 mph true wind, and the boat is going straight into it at 5 mph, you and the boat will feel a 15 mph apparent wind from straight ahead.

If there is a 10 mph true wind, and the boat is going with the wind (downwind) 5 mph through the water, you and the boat will feel a 5 mph wind at your back.

If there is a 10 mph true wind, and you are powering at right angles to the wind at 5 mph, the situation is more complicated. The wind the boat feels will be a combination of the two winds; the true wind from the side and the wind created by the motor from straight ahead. The apparent wind will appear to come from about 60 degrees from the side of the boat. It takes trigonometry to calculate the exact apparent wind speed and direction. Looking at the wind vane is easier.

The sailboat has only a small brain, and only feels the apparent wind, and this is what it must sail in. The apparent wind will determine how the sails are to be trimmed, and how the masthead wind indicator will point. It is the wind you must use to sail. But the complexity gets worse. As the speed of the boat changes, and as the true wind speed gusts and eases, the apparent wind strength and direction will change, and you have to keep trimming the sails or altering course as the changes occur. You don’t have to, of course. You can just get it close enough to enjoy the ride. But if you want to sail like a superstar, you will have to keep tweaking and adjusting for perfect trim all the time. This wins races. (You can learn to sail quite well in a matter of hours. But it will take a lifetime to master all of the subtle little intricacies.)

Another complexity. As you pick up speed, the wind from the front of the boat increases, and the apparent wind will come more from the front of the boat. Actually, the apparent wind will now be stronger than the true wind, so you have more usable wind to sail in. With each new change in wind speed or boat speed, you will need a new sail trim.

When you watch the telltales on the jib and the streamers at the rear of the mainsail, you will notice that the top ones don’t always flow in the same manner as the lower ones. This means that the sail is not at the same angle to the wind at various heights. Wind blows harder as you go higher, and there will be a different apparent wind (and wind angle) up there. (This is because the friction of the earth and water slows wind down at low levels.) You may see the upper mainsail streamers trying to hide behind the mainsail, and the lower ones flowing nicely to the rear. This means that the top of the sail is in too tight. The boom vang controls this. Loosen the vang, and watch the upper part of the sail sag outward away from the wind. Tighten the vang, and it pulls down on the boom and pulls in on the upper part of the sail. When the vang is set right, all the streamers will behave the same. Fortunately, sailcloth is a bit stretchy, and the top will usually sag off just about enough to match the angle change caused by stronger winds higher up.

The jib has no boom, therefore there is no vang. But you can use the position of the jib sheet pulley on the deck track to control twist. If you move the sliding pulley forward on the track, the top part of the sail will be pulled in tighter. Move it to the rear, and the top part sags off downwind. Move the jib pulley on the track so that all of the telltales flow the same. If the top one on the upwind side flutters before the bottom one, move the pulley forward. If the bottom one is the first to flutter, move the pulley to the rear.

When sailing upwind you can also tell how you are doing by watching the forward edge of the jib. As you point the boat up into the wind, the leading edges of the jib will start to flutter and collapse inward. Turn away from the wind until the fluttering at the front part of the sail stops and the sail appears full. Try to steer the boat so that the front of the jib is just on the edge of starting to flutter and collapse. You will notice that the telltales start flopping around just as the sail starts to flutter in front of the telltales. The telltales and the fluttering are both giving you the same message. The jib halyard must be very tight, or the sail will sag between the snaps on the forestay. This is a most common problem for beginners. The mainsail halyard should be tight, but not so tight as to create vertical wrinkles at the leading edge of the sail, parallel the mast.

Theouthaul, mainsail halyard and jib halyard should be tighter in heavy air to flatten the sails, an loosened in lighter wind. In general, you want a very flat sail in heavy wind, to kill off some of its power, and very full and baggy sail in light wind, when you need all the power you can get. The fuller the sail (baggier) the more the power.

There are light lines sewn into the rear edge of each sail. Adjust
these lines just tight enough to keep the rear edge of the sail from fluttering. If you get the lines too tight, the rear edge of the sail will cup toward the wind and slow the boat up a small amount.

The time to reduce sail area is when you first think that it might be necessary. Even with less sail, the boat will be faster if the heeling angle can be kept below 25 degrees. Beyond that, performance goes all to hell.

The reefing sequence goes like this:

1. If you can’t keep the leaning angle below 25 degrees, flatten the mainsail with the halyard andouthaul. Flatten the jib or genoa by tightening the halyard. Loosen the vang to allow the top of the mainsail to twist downwind and spill wind. Move the jib deck pulley to the rear of the track to let wind spill out of the top of the jib.

2. If you still can’t stand up straighter than 25 degrees, roll the genoa about 1/2 way in. If you don’t have roller furling, change from genoa to jib.

3. After that, put a reef in the main, and keep the partially rolled genoa or the full jib.

4. If it still leans too much, roll in more genoa, (or get rid of the jib) and keep the reef in the mainsail.

5. If that isn’t enough, consider pulling down the sails and powering home. Or pull down all of the sails and ride it out until the wind lets up. If you are sailing downwind, you can use just the jib or reefed genoa. (This doesn’t work well upwind.)

When sailing into the wind, try leading the genoa sheet between the upper shroud and the lower shroud. This will allow the boat to point 5 to 7 degrees closer into the wind.

When racing in heavy wind, have at least a 4 man crew. In light air, the fewer the better. Remember it is against the rules to throw crew members overboard to lighten the boat.

The boat’s bottom, rudders and centerboard must be clean and shiny. A few days of marine growth will slow the boat dramatically. Any bumps at all, even microscopic, will create turbulence and destroy the orderly flow of water across the surface, and really screw up performance.

Keep the boat moving. With the small daggerboard, forward speed is essential to keep the board lifting the boat into the wind. No speed, no lift, and the boat will just slide sideways.

Be sure to get rid of all extra weight. Crew can be moved to the windward side to keep the boat level. Junk in the boat is hard to move, and it will just slow the boat down. Light weight is very important downwind. Going upwind, added weight can sometimes be helpful. Waves and chop tend to slow up a light boat, while a heavier boat can plunge right on through. Keep rudder motion to a minimum. Steering creates lift from side to side. Lift is always accompanied by drag. Keep the rudder angle steady.

When trimmed properly, the boat should want to head up into the wind when you let go of the wheel. When sailing into the wind, the front of the rudders should be turned about 5 degrees toward the upwind side of the boat.

When sailing with the wind, avoid sailing straight downwind. Point up into the wind about 20 degrees, until the jib is not smoothed by the mainsail, and starts to work. If your destination is straight downwind, tack back and forth as shown below. The boat will go a lot faster, which will more than make up for the fact that you have to sail a bit farther.

Tacking downwind

This will also reduce the risk of accidentally jibing. When you do want to jibe, pull in the mainsheet until the boom is near the centerline of the boat, and gradually let it out on the other side. Don’t let it slam over hard. Keep the crew off the cabin top if there is risk of jibing. The boom can whack them.

Rotating the mast.

Allowing the mast to rotate, as shown below, gives a major boost to the power of the mainsail.

Mast rotation

With the mast centered, there is a major amount of turbulence over the first third of the mainsail. Rotating the mast gets rid of the turbulence, and allows a smooth flow of air along the backside of the sail. This reduces drag. It also caused the sail to direct its force more forward, creating less tipping force and more forward push.

Weight and crew position.

When sailing, make sure the ballast tank is full. When under sail in heavy winds, keep the crew weight aft and to the windward side. In light wind, keep the crew forward and positioned so the transom is almost out of the water and the boat heels about 5 to 10 degrees. This heeling reduces the amount of hull surface in contact with the water. In light wind, the surface area touching the water creates most of the drag. The more surface in contact with the water, the slower the boat will go. A 10 degree angle of heel reduces this area significantly.

It has been said that the art of seamanship is not getting yourself in a position where you need seamanship. Be careful.
The following is a reproduction of the decals that are placed on the steering pedestal and on the cabin wall inside the boat. These decals contain important safety information, and should not be removed. If the decals become defaced or illegible, please call or write to us and we will provide new ones.

DANGER

Engine exhaust contains carbon monoxide gas (CO) that can cause injury or death. Spinning propellers can be extremely dangerous. Shut off the engine when near the transom or in the water behind the boat.

Get fresh air to anyone with signs of CO poisoning (nausea, headache, dizziness, drowsiness, or lack of consciousness). Get medical help.

Do not let the mast or rigging touch overhead power lines. The results could be fatal.

WARNING

Fill the ballast tank before sailing or powering. (See Owner’s Instruction Manual for possible exceptions.)

Maximum crew capacity is 6 persons, not to exceed 960 pounds.

If the ballast tank is not full, the following applies: (1) Maximum crew capacity is 4 persons, not to exceed 640 pounds. (2) No one should be on the cabin top or foredeck. (3) Remove all sails and operate only in calm water and where rescue from capsizing is possible. THE BOAT CAN CAPSIZE IF THE BALLAST TANK IS NOT FULL.

After filling the ballast tank, close the vent plug and transom valve. Check them for leaks. The vent must stay closed to prevent flooding.

When powering over 6 mph, always remove the sails, raise the rudders and daggerboard, and allow no one on the cabin top or foredeck.

Watch where you are going. The boat’s rigging, sails, deck and crew can occasionally block your view. Move around to assure a clear view.

Maximum trailering weight is 4200 pounds, including boat, trailer and all equipment. The trailer tongue weight should be between 250 and 300 pounds. Always empty the ballast tank before trailering. Make sure the trailer wheel lug nuts are tight.

Read and understand the contents of the Owner’s Instruction Manual.

This boat complies with U. S. Coast Guard safety standards in effect on the date of certification.
DANGER

Engine exhaust contains carbon monoxide gas (CO) that can cause injury or death. Spinning propellers can be extremely dangerous. Shut off the engine when near the transom or in the water behind the boat.

Get fresh air to anyone with signs of CO poisoning (nausea, headache, dizziness, drowsiness, or lack of consciousness). Get medical help.

Do not let the mast or rigging touch overhead power lines. The results could be fatal.

WARNING

Fill the ballast tank before sailing or powering. (See Owner’s Instruction Manual for possible exceptions.)

Maximum crew capacity is 6 persons, not to exceed 960 pounds.

If the ballast tank is not full, the following applies: (1) Maximum crew capacity is 4 persons, not to exceed 640 pounds. (2) No one should be on the cabin top or foredeck. (3) Remove all sails and operate only in calm water and where rescue from capsize is possible. THE BOAT CAN CAPSIZE IF THE BALLAST TANK IS NOT FULL.

After filling the ballast tank, close the vent plug and transom valve. Check them for leaks. The vent must stay closed to prevent flooding.

When powering over 6 mph, always remove the sails, raise the rudders and daggerboard, and allow no one on the cabin top or foredeck.

Watch where you are going. The boat’s rigging, sails, deck and crew can occasionally block your view. Move around to assure a clear view.

Maximum trailering weight is 4200 pounds, including boat, trailer and all equipment. The trailer tongue weight should be between 250 and 300 pounds. Always empty the ballast tank before trailering. Make sure the trailer wheel lug nuts are tight.

Read and understand the contents of the Owner’s Instruction Manual.

This boat complies with U. S. Coast Guard safety standards in effect on the date of certification.
MacGregor 26...Factory website for the MacGregor 26', $22,900 trailerable sailboat, 24 mph, sleeps 6, the best selling cruising sailboat in the world

for your nearest dealer, please contact

MACGREGOR SALES at the factory, PHONE 310 621 2206

INTERNATIONAL SALES

FOR BOATS TO BE EXPORTED OUTSIDE THE US AND CANADA, PLEASE CONTACT:
FOR PARTS ORDERS AND ASSISTANCE WITH OLDER BOATS:

YOUR LOCAL DEALER WILL HAVE PARTS AND ITEMS FOR CURRENT BOATS.

FOR OLDER MODELS, INCLUDING ALL OF THE MACGREGOR AND VENTURE SAILBOATS PRODUCED FROM THE BEGINNING OF TIME (1968), UP TO AND INCLUDING THE MACGREGOR 26X,

CONTACT BLUEWATER YACHTS IN SEATTLE..

THEY HAVE AN EXTENSIVE STOCK OF PARTS, EQUIPMENT, AND LOTS OF GOOD ADVICE FOR EVERY MACGREGOR BUILT SAILBOAT..

BLUEWATER YACHTS, 2400 WESTLAKE AVE N. #L1. SEATTLE WASHINGTON 98019,

EXTRUSION LENGTH 10' 6"
ALL OUTSIDE SURFACES EXPOSED
202 R1 ANODIZE
POUNDS PER FOOT .898
AREA .748
PERIMETER 17.550
MATERIAL 6063-T6
ALUMINUM ASSOCIATION STANDARD
TOLERANCES APPLY UNLESS
OTHERWISE SPECIFIED

BOOM 26M
QTY PER BOAT 1 EA
DRAWING DATE DEC 12 2005
MACGREGOR PART NUMBER 502
EXTRUSION LENGTH 30 FEET
TYPICAL WALL THICKNESS .110 (+.010 - .010)
202R1 ANODIZE
POUNDS PER FOOT 1.5729
TOTAL POUNDS PER PIECE 47.188
AREA 1.330 SQ INCHES
PERIMETER 23.694 INCHES
MATERIAL 6061 T6
ALUMINUM ASSOCIATION TOLERANCES APPLY UNLESS
OTHERWISE SPECIFIED
ALL OUTSIDE SURFACES EXPOSED
SYMMETRICAL AROUND VERTICAL CENTERLINE

Ix 2.6626
Ly 1.3228
Parts List for Website by Commodity RR

<table>
<thead>
<tr>
<th>NUT 6-32 HEX</th>
<th>DRAWING DATE</th>
<th>OUR PART NUM</th>
<th>BUY QTY PER UNIT</th>
<th>ANNUAL USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUT 7/16" - 14 NYLON INSERT LOCKNUT - ZINC PLATE STEEL -</td>
<td>1</td>
<td>EA</td>
<td>4.0</td>
<td>2,400</td>
</tr>
<tr>
<td>NUT - HEX LOCK 9/16" -18 (SPRING HANGER KIT)</td>
<td>904</td>
<td>EA</td>
<td>4.0</td>
<td>2,400</td>
</tr>
<tr>
<td>NUT 1/2"- 13 LOCK NUT, NYLON INSERT STAINLESS STEEL</td>
<td>959</td>
<td>EA</td>
<td>6.0</td>
<td>3,600</td>
</tr>
<tr>
<td>NUT 3/8" - 16 NYLON INSERT LOCKNUTS STAINLESS STEEL</td>
<td>8</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
</tr>
<tr>
<td>NUT 3/8"-16 NUT STAINLESS STEEL</td>
<td>7</td>
<td>EA</td>
<td>69.4</td>
<td>41,622</td>
</tr>
<tr>
<td>PIN - CLEVIS 1/4" X 1/2" STAINLESS STEEL</td>
<td>6</td>
<td>EA</td>
<td>5.0</td>
<td>3,000</td>
</tr>
<tr>
<td>RIVET 3/16 X 1/2" ALUMINUM POP RIVET AAP6-6 OR AD66ABS</td>
<td>175</td>
<td>EA</td>
<td>12.0</td>
<td>7,200</td>
</tr>
<tr>
<td>RIVET 3/16" X 1/2" STAINLESS POP RIVET SSD66SSBS</td>
<td>74</td>
<td>EA</td>
<td>16.0</td>
<td>9,600</td>
</tr>
<tr>
<td>SCREW 6 X 1/2" OVAL HEAD SHEET METAL SCREW PHILLIPS</td>
<td>76</td>
<td>EA</td>
<td>4.0</td>
<td>2,400</td>
</tr>
<tr>
<td>SCREW 6 X 3/4" OVAL HEAD SHEET METAL SCREW PHILLIPS</td>
<td>78</td>
<td>EA</td>
<td>75.0</td>
<td>45,000</td>
</tr>
<tr>
<td>SCREW 10 X 1" FLAT HEAD SHEET METAL SCREW PHILLIPS</td>
<td>79</td>
<td>EA</td>
<td>48.0</td>
<td>28,800</td>
</tr>
<tr>
<td>SCREW 10 X 1" PAN HEAD SHEET METAL SCREW PHILLIPS</td>
<td>82</td>
<td>EA</td>
<td>17.0</td>
<td>10,200</td>
</tr>
<tr>
<td>SCREW 10 X 1 1/2" FLAT HEAD SHEET METAL SCREW PHILLIPS</td>
<td>84</td>
<td>EA</td>
<td>11.0</td>
<td>6,600</td>
</tr>
<tr>
<td>SCREW 8 X 3/8" PAN HEAD SHEET METAL</td>
<td>80</td>
<td>EA</td>
<td>24.0</td>
<td>14,400</td>
</tr>
<tr>
<td>WASHER NUMBER 10 WASHERS FLAT STAINLESS</td>
<td>976</td>
<td>EA</td>
<td>120.0</td>
<td>72,000</td>
</tr>
<tr>
<td>WASHER 1/4" 1 OD .05 THICK STAINLESS STEEL</td>
<td>90</td>
<td>EA</td>
<td>26.0</td>
<td>15,600</td>
</tr>
<tr>
<td>WASHER 3/8" 1 1/2" OD STAINLESS STEEL</td>
<td>92</td>
<td>EA</td>
<td>145.0</td>
<td>87,000</td>
</tr>
<tr>
<td>WASHER 3/8" FLAT 7/8" OD STAINLESS STEEL</td>
<td>96</td>
<td>EA</td>
<td>8.0</td>
<td>4,800</td>
</tr>
<tr>
<td>WASHER 3/8" LOCK - PLAIN OR ZINC PLATED STEEL</td>
<td>94</td>
<td>EA</td>
<td>51.2</td>
<td>30,726</td>
</tr>
<tr>
<td>WASHER 5/8" FLAT - ZINC PLATED STEEL</td>
<td>918</td>
<td>EA</td>
<td>4.0</td>
<td>2,400</td>
</tr>
<tr>
<td>WASHER 7/16" FLAT - ZINC PLATED STEEL</td>
<td>916</td>
<td>EA</td>
<td>2.0</td>
<td>1,200</td>
</tr>
<tr>
<td>WASHER 1/2"X1 1/8"OD SILICONE BRONZE</td>
<td>541</td>
<td>EA</td>
<td>3.0</td>
<td>1,800</td>
</tr>
</tbody>
</table>
SAILING PERFORMANCE

POWER, WATERSKI

SPINNAKER

SAFETY

EASY TO SAIL

HOW TO SAIL

WHY THE LOW PRICE

COST TO OWN

COMPARE 26X

COMPARE HUNTER EDGE

COMPANY HISTORY

HALL OF FAME AWARD

WHY BUY A SAILBOAT

MAGAZINE REVIEWS

SUPPLIERS' CORNER

SHIPPING

EXPORTING

FACTORY GARAGE SALE

MACGREGOR 65

MACGREGOR 70 ANTHEM
9/32 HOLES TYPICAL CLEAR THROUGH

13 GA (.091) 302/304 STAINLESS POLISHED

ADJUSTER CHANNEL
FOR MACGREGOR 26M: 6 EA PER BOAT
DRAWING DATE: NOVEMBER 3, 2005
MACGREGOR PART NUMBER: 100
MATERIAL 12 GA 302/304 STAINLESS POLISHED

ADJUSTER SLIDE
FOR MACGREGOR 26M: 6 PER BOAT
DRAWING DATE: NOVEMBER 3 2005
MACGREGOR PART NUMBER: 360
1/4" HOLE
RADIUS 5/16

3/8 BOLT AXLE IN .375 HOLE

ROLLER MATERIAL: NYLON, DELRIN, TEFLOWN OR APPROXIMATE EQUIVALENT

BEND OR WELD, WHICHEVER IS LEAST EXPENSIVE

11 GA STAINLESS (.120)
302/304 POLISHED

13/32" HOLES

ANCHOR ROLLER
FOR MACGREGOR 26M: 1 PER BOAT
DRAWING DATE: NOV 3 2005
MACGREGOR PART NUMBER: 101

CHANGED FROM 10 GA. TO 11 GA JULY 20 2005
BOW EYE

FOR MACGREGOR 26M: 1 PER BOAT
DRAWING DATE: NOV 3, 2005
MACGREGOR PART NUMBER: 114
3-11/16
3-9/16

124 DEGREES
4-3/16

R3/8

3/16 POLISHED STAINLESS STEEL 302/304

BOW PLATE FOR MACGREGOR 26M: 1 PER BOAT
DRAWING DATE: NOV 3 2005
MACGREGOR PART NUMBER: 115
.104 12 GA
POLISHED
302/304

9/32 HOLES
R0.37

.75"

1.00

BRACKET - MAINSAIL TACK

MACGREGOR 26M: PER BOAT 1 EA
DRAWING DATE: NOV 3 2005
MACGREGOR PART NUMBER: 514
WATERPROOF WELD CHAINPLATE COVER TO CHAINPLATE TOP SIDE ONLY

3/16" POLISHED STAINLESS STEEL 302/304

1-3/4

90 DEG

90 DEG

3/16

3/4

3/8

3/16

3/8

3/8

1-1/2

1-1/2

1/4

1/4

5/8

9/32

1-1/2

2-3/4

1/4" RADIUS 4 PLACES

R3/8 ALL 4 CORNERS

CHAINPLATE
MACGREGOR 26M: PER BOAT 2 EA
DRAWING DATE: NOV 3 2005
MACGREGOR PART NUMBER: 129
1/4" X 3/4" HEX HEAD BOLT WELDED TO SLIDE

304 304 STAINLESS
12 GA .104 MILL FINISH
.104 12 GA
POLISHED
STAINLESS STEEL
302/304
3/4" DIAMETER STAINLESS TUBING, POLISHED APPROX 1/16 WALL

9/32 HOLES
90 DEGREES
TO EACH OTHER

ACTUAL SIZE

GOOSENECK TUBE
MACGREGOR 26M: PER BOAT 1 EA
DRAWING DATE: NOV 11 2005
MACGREGOR PART NUMBER: 518
12 GA .104 302/304 STAINLESS
POLISHED WELL
ON EXPOSED SURFACES

REEF HOOK STARBOARD SIDE
WELD GOOSENECK HOOK TO BRACKET
9/32 HOLES

WELD GOOSENECK BRACKET TO ANGLE, 4 SIDES

STAINLESS ROD
1/4 DIA
R1/4

3/16 HOLES
4 EA

1/16 RADIUS
ON END

GOOSENECK V BRACKET
FOR MACGREGOR 26M: 1 PER BOAT
DRAWING DATE: NOVEMBER 3, 2005
MACGREGOR PART NUMBER: 520
16 GA .060" 302 304 STAINLESS, POLISHED

1-1/2
1/4
1/4
1/2
3/8
3/8
3 5/8"
3/4
5/16
1
3-15/32
1-17/32
3/16 PIN, WELDED IN PLACE

HASP
MACGREGOR 26M: PER BOAT 1 EA
DRAWING DATE: NOV 3 2005
MACGREGOR PART NUMBER: 151
11 GA POLISHED .120" 302/304 STAINLESS

17/64" HOLES 6 PLACES

GOOD WELDS

1/4" HINGE PIN

HINGE 3 X 3.5
MACGREGOR 26M PER BOAT 1 EA
DRAWING DATE: OCT 20 2005
MACGREGOR PART NUMBER: 152
.104 POLISHED 302/304 STAINLESS STEEL
BRONZE PLASTIC OR STAINLESS SHEAVE

1/4 x 2" SHAFT WELDED TO
UNDERSIDE OF PLATE

HINGE LINE

SUPPLIER STANDARD HINGE
PIN ARRANGEMENT

WELD BOTH SIDES

HINGE DAGGERBOARD ROPE
MACGREGOR 26M: PER BOAT 1 EA
DRAWING DATE: NOV 3 2005
MACGREGOR PART NUMBER: 156
1" STAINLESS STEEL TUBING
.049 WALL POLISHED

9/32" HOLES THROUGH BOTH TUBES

CAP OPEN ENDS

PLASTIC OR RUBBER CAP
78 DEG

5 1/2"

WELD SUPPORT BAR TO CENTER OF REAR OF CENTER STEP

9/32" HOLES THROUGH BOTH TUBES

LADDER - SWIM
MACGREGOR 26M: PER BOAT 1 EA
DRAWING DATE: NOV 1 2003
MACGREGOR PART NUMBER: 216
2 LEGS PER SET
1 PORT AND 1 STARBOARD

VERTICAL RAILS
1 1/4" OD, 1/8 WALL
POLISHED STAINLESS TUBING
TUBE CUT LENGTH 3' 11-7/8"
5 PIECES PER 20' TUBE LENGTH

NO END CAPS

SHORTENED BY 1 1/2" ON APRIL 1 2005
STEP ANGLE CHANGED FROM 65 DEGREES TO 60 DEGREES JULY 20, 2005

LADDER SIDE VIEW

ALL STEPS

STEP PLATES 302 304
.135 STAINLESS 10 GA

PORT SIDE

LADDER PORT AND STARBOARD SET
MACGREGOR 26M: PER BOAT 1 SET
DRAWING DATE: NOV 12 2005
MACGREGOR PART NUMBER: 465
HOLE FOR 3/8" FASTENER

RADIUS TO FIT 1" TUBING

MATERIAL: DELRIN, NYLON OR EQUIVALENT
WHITE OR BLACK

LADDER SPACER
MACGREGOR 26M: PER BOAT 2 EA
DRAWING DATE: NOV 1 2005
MACGREGOR PART NUMBER: 160
WELDED STAINLESS CAP ON TOP, NO SHARP EDGES

1/2"

3/8" INSIDE DIAMETER LINED HOLE, NO SHARP EDGES

1/16 RADIUS ON TOP EDGE

BASE SYMMETRICAL AROUND VERTICAL CENTERLINE

.049 WALL POLISHED 302/304 STAINLESS TUBING
1" OUTSIDE DIAMETER

GOOD SOLID WELDS FOR EXTRA STRENGTH

18-1/2"

.136 10 GA BASE POLISHED STAINLESS

5/16" BAR STOCK ANGLE SUPPORT

ALL PIECES 302/304 POLISHED STAINLESS STEEL

LIFELINE POST NO LOOP

MACGREGOR 26M: PER BOAT 4 EA
DRAWING DATE: NOV 1 2005
MACGREGOR PART NUMBER: 470

ALL TUBE AND ROD WELDED TO BASE WITH GOOD SOLID WELDS
WELDED STAINLESS CAP ON TOP, NO SHARP EDGES

1/6 RADIUS ON TOP EDGE

3/8" INSIDE DIAMETER LINED HOLE, NO SHARP EDGES

.049 WALL POLISHED 302/304 STAINLESS TUBING 1" OUTSIDE DIAMETER

GOOD SOLID WELDS FOR EXTRA STRENGTH

18-1/2"

5/16" BAR STOCK ANGLE SUPPORT

WELD

3-3/16

90.0000°

90.0000°

1/4" ROD - GOOD WELD

.136 10 GA BASE POLISHED STAINLESS

1-1/4"

1-3/4"

9/16" HOLES 4 PLACES

BASE DRAWN ACTUAL SIZE

BASE SYMETRICAL AROUND VERTICAL CENTERLINE

ALL PIECES 302/304 POLISHED STAINLESS STEEL

LIFELINE POST WITH 1 LOOP

MACGREGOR 26M: PER BOAT 2 EA
DRAWING DATE: OCT 20 2005
MACGREGOR PART NUMBER: 476

ALL TUBE AND ROD WELDED TO BASE WITH GOOD SOLID WELDS
STIFFENER WELDED ON Underside

ALL PIECES = .120" POLISHED STAINLESS 302/304 STEEL

STIFFENER WELDED ON Underside

1/2" X 1-1/2 HEX BOLT WELDED TO Underside of Plate

Weld Tube to Plate. Tube receives a 3/8" Bolt. 1/16" wall. Tube, 3-1/4" long

Mast Base Hinge Plate

MacGregor 26M: Per Boat 1 EA

Drawing Date: NOV 1 2005

MacGregor Part Number: 163
FIT TO MAST EXTRUSION

WELD 3 VERTICAL PLATES (A, B, C) TO TOP OF BASE PLATE

BASE AND EARS FROM .120 11 GA POLISHED STAINLESS STEEL 302/304

THROUGH BOTH PLATES

3/16 DIA HOLE

MINIMIZE WELD FILLET ON INBOARD SIDE OF EARS.

GOOD STRONG WELD

3" DIA .136 10 GA PLATE WELDED TO BASE

5-1/4

1-13/16

6-15/16

1/2

90 DEG

90 DEG

R3/8

1/4

3/8

31 DEG

1/4

5/16

9/16

5/8

15/16

31/16

3/16

BASE AND EARS FROM .120 11 GA POLISHED STAINLESS STEEL 302/304

MINIMIZE WELD FILLET ON INBOARD SIDE OF EARS.

GOOD STRONG WELD

3" DIA .136 10 GA PLATE WELDED TO BASE

5-1/4

1-13/16

6-15/16

1/2

90 DEG

90 DEG

R3/8

1/4

3/8

31 DEG

1/4

5/16

9/16

5/8

15/16

31/16

3/16

5-1/4

1-13/16

6-15/16

1/2

90 DEG

90 DEG

R3/8

1/4

3/8

31 DEG

1/4

5/16

9/16

5/8

15/16

31/16

3/16

MAST BOTTOM CAP
MACGREGOR 26M: PER BOAT 1 EA
DRAWING DATE: NOV 11 2005
MACGREGOR PART NUMBER: 526
13/32" HOLE THROUGH PLATE

WELD EARS TO TUBE.

.120 THICK (11 GAUGE) 1" WIDE POLISHED STAINLESS STEEL TUBING .065 WALL

1" OD POLISHED STAINLESS STEEL TUBING .065 WALL

6" RADIUS

174 DEG

SYMETRICAL AROUND CENTERLINE

CRITICAL DIMENSION PLUS OR MINUS 1/32"

13/32" HOLES THROUGH (2) 12" AREA

LEGS MUST BE PARALLEL OVER THIS 12" AREA

Mast Crutch
MACGREGOR 26M: PER BOAT 1 EA
DRAWING DATE: NOV 4 2005
MACGREGOR PART NUMBER: 552
POLISHED 1.25 OD S TAINLESS TUBING
.065 WALL
.302-304 STAINLESS STEEL

CRITICAL DIMENSION
PLUS OR MINUS 1/32"

9/32 HOLES FOR 1/4" FASTENERS 2 EA
DRILLED THRU TUBE
MUST BE 90 DEGREES
TO 3/8 HOLE

MAST CRUTCH SOCKET
MACGREGOR 26M: PER BOAT 2 EA
DRAWING DATE: NOV 12 2005
MACGREGOR PART NUMBER: 553
APPROX .050 STAINLESS 302/304 POLISHED

2 - 1/2"

Ø7/32

Ø7/8

R1/8

1/2

3/8

3/8

1/2

R1/2

1 1/4

2

4

3 3/8

1 1/2

105 DEG

1/8" RADIUS

MAST LIGHT BRACKET
MACGREGOR 26M: PER BOAT 1 EA
DRAWING DATE: NOV 2 2005
MACGREGOR PART NUMBER: 528
3/8" HOLE THRU

1" OD .065 WALL STAINLESS TUBING
NO CAPS
3/8" HOLES, 90 DEGREES TO EACH OTHER

14-5/8

5-3/8

5/8

6-1/2

5-3/8

15-3/4

R3

MOTOR PUSHBAR - INSIDE
MACGREGOR 26M: PER BOAT 1 EA
DRAWING DATE: NOV 4 2005
MACGREGOR PART NUMBER: 171
3/8" DIA ROD 302/304 STAINLESS STEEL, POLISHED
3/8 - 16 THREAD

NO THREAD

3/16 HOLE THRU

1/4

2-1/8

1-1/8

3-1/4
SIDE VIEW

2-1/2" OD POLISHED STAINLESS TUBE .065 WALL

TOP AND BOTTOM PLATES PARALLEL TO EACH OTHER

TOP AND BOTTOM FLANGES

5-1/2

PLATE: 120 11 GA POLISHED STAINLESS (302/403)
HOLE IN PLATE EQUAL TO INSIDE DIA OF TUBE
13/32" HOLES IN EACH PLATE FOR 3/8" BOLTS
MAKE SURE WELDS ARE STRONG

BOTTOM PLATE, SAME AS TOP PLATE EXCEPT 3/16" THICK (7 GA)

PEDESTAL BASE
MACGREGOR 26M: PER BOAT 1 EA
DRAWING DATE: NOV 3 2005
MACGREGOR PART NUMBER: 562
MAST CARRIER EARS

4" RADIUS

3/8" HOLE ONLY IN REAR FACE OF PULPIT, DEBURRED INSIDE AND OUT

BASES, 4 EA, 10 GAUGE .136 STAINLESS STEEL 302/304 POLISHED
BASES CENTERED ON ENDS OF TUBING

1/4" ROD WELDED TO TUBE

3/8" HOLE IN REAR FACE OF PULPIT, DEBURRED INSIDE AND OUT

10 GAUGE .136 STAINLESS 302/304 POLISHED
2 EA, WELDED TO TUBE

PULPIT
MACGREGOR 26M: PER BOAT
DRAWING DATE: NOV 12 2005
MACGREGOR PART NUMBER: 480
3/16 POLISHED STAINLESS STEEL

302/304

DRILL AND TAP FOR 1/4-20 BOLT

90 DEG

DRILL AND COUTERSINK FOR 3/16 FLAT HEAD FASTENER (#10)

1 1/4

1-1/2

1/2 1/4 3/4

RUDDER ADJUSTER BOLT HOLDER
MACGREGOR 26M: PER BOAT 2 EA
DRAWING DATE: NOV 3 2005
MACGREGOR PART NUMBER: 564
TO FIT 1 1/2 OD TUBE

Ø1-1/4

90 DEGREES

125 R

10 GA (.136) POLISHED STAINLESS STEEL 302/304

17/64" HOLES

RUDDER BRACKET
MACGREGOR 26M: PER BOAT 2 EA
DRAWING DATE: NOV 3 2005
MACGREGOR PART NUMBER: 180
7 GA .180 POLISHED 302/304 STAINLESS STEEL

WELD TUBE TO PLATE
1 1/4" STAINLESS STEEL TUBING 1-9/16
1/8" WALL
WELD TUBE TO PLATE

CHAMFER INSIDE EDGE 1/16

3/8 HOLE THROUGH TUBE

90 DEG

R1/4
4 PLACES

3/4

2

NO WELD BUILDUP ON TUBE,
MUST FIT INTO 1 1/4" HOLE
IN BOAT HULL

1/4" PIN WELDED IN PLACE

WELD ANGLE TO PORT SIDE OF RUDDER GRIP

RUDDER GRIP
MACGREGOR 26M: PER BOAT 2 EA
DRAWING DATE: NOV 3 2005
MACGREGOR PART NUMBER: 566
.375 HOLES FOR 3/8 FASTENER

ALl PIECES 302/304 .104 STAINLESS (12ga)

GOOD WELD, BOTH SIDES, BETWEEN EARS AND BASE PART

FITS TIGHT OVER MAST SECTION

SPREADER MAST BRACKET
MACGREGOR 26M: PER BOAT 1 EA
DRAWING DATE: NOV 12 2005
MACGREGOR PART NUMBER: 530
STAINLESS STEEL TUBING
INSIDE DIAMETER - 1.03" MINIMUM.
.049" WALL THICKNESS
APPROX 1.152" OUTSIDE DIAMETER

13/32" DIAMETER HOLE FOR 3/8" PIVOT BOLT

GOOD, SOLID WELD BETWEEN BRACKET AND TUBE

SPREADER SOCKET
MACGREGOR 26M: PER BOAT 1 EA
DRAWING DATE: NOV 12 2005
MACGREGOR PART NUMBER: 532
2 CAPS AND 2 BODIES PER BOAT

CAP

1/16 RADIUS ON THIS CIRCUMFERENCE

0.325

.175, CLEARANCE FOR #8-32 MACHINE SCREW

BODY

25/32

5/32

7/8

1

.250

3/16" DIA HOLE THROUGH

THREAD FOR #8-32 X 7/8" PAN HEAD MACHINE SCREW

BOTH PARTS BLACK ANODIZED ALUMINUM

SPREADER TIP
MACGREGOR 26M: PER BOAT 2 SETS
DRAWING DATE: NOV 11, 2005
MACGREGOR PART NUMBER: 534
3/16 X 1" STAINLESS STEEL

ACTUAL SIZE

GOOD WELD ALL AROUND

3/4 ID TUBE, .049 WALL

13/32" HOLE

5/8 3/8 RADIUS

2-3/8 3/8 RADIUS

3/8 RADIUS

THROUGH HOLE 11/16

Ø11/16 3/8 RADIUS

1 1-1/8

7/8 X 14 THREAD

1-11/16

3

STOCKING CABLE HOLDER

MACGREGOR 26M: PER BOAT 1 EA
DRAWING DATE: NOV 12 2005
MACGREGOR PART NUMBER: 190
BATTERY STRAP
MACGREGOR 26M: PER BOAT 1 EA
DRAWING DATE: NOV 11, 2005
MACGREGOR PART NUMBER: 191
STRAP MUST BE FORMED TO FIT TUBE OVER THIS LENGTH

TUBE IS 1 1/2" DIAMETER
.135 (10 GA) STAINLESS 302/304
1 EA RIGHT, 1 EA LEFT, MIRRORED

STRAPS FIT OVER SPREADER MAST BRACKET AND TIGHT AGAINST FRONT FACE OF MAST. THE TWO PIECES SHARE A COMMON 3/8" BOLT

13/32 DIAMETER HOLE

FRONT EDGE OF MAST

1-13/16
2-5/32

R7/32

1/4" RADIUS

3-7/32

WELD THE TWO HALVES TOGETHER

1-19/32

JULY 20 2005

STARBOARD

PORT

STRAP MAST LOWER
MACGREGOR 26M: PER BOAT 1 SET
DRAWING DATE: NOV 11 2005
MACGREGOR PART NUMBER: 536
.135 (10 GA) STAINLESS

1 EA RIGHT, 1 EA LEFT, MIRRORED

.135 (10 GA) STAINLESS 302/304
1 EA RIGHT, 1 EA LEFT, MIRRORED

1/2" RADIUS

FIT TO MAST SECTION PROVIDED

WELD THE TWO HALVES TOGETHER

FIT TO MAST SECTION PROVIDED

13/32 DIAMETER

R7/32

R1/2

1-3/32

7/16

1-13/16

2-5/32

FRONT EDGE OF MAST

STRAP MAST UPPER
MACGREGOR 26M: PER BOAT 1 SET
DRAWING DATE: NOV 1 2005
MACGREGOR PART NUMBER: 538
9/32 HOLES

CAR TO FIT STANDARD 1” T TRACK

U BRACKET ANGLES 10 DEGREES INBOARD

1 PER BOAT

SUNSHADE CAR PORT

MACGREGOR PART NUMBER 221
9/32” HOLES

CAR TO FIT
STANDARD 1” T TRACK

U BRACKET ANGLES 10 DEGREES
OUTBOARD

1 PER BOAT

SUNSHADE CAR STARBOARD

MACGREGOR PART NUMBER 219
<table>
<thead>
<tr>
<th>PARTS LIST FOR WEB SITE BY COMMODITY RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACGREGOR 26</td>
</tr>
<tr>
<td>SITE MAP</td>
</tr>
<tr>
<td>SUNSHADE FRAMES</td>
</tr>
<tr>
<td>TABLE BRACKET</td>
</tr>
<tr>
<td>TABLE LEG SOCKET</td>
</tr>
<tr>
<td>TILLER</td>
</tr>
<tr>
<td>TILLER CROSSBAR</td>
</tr>
<tr>
<td>TRANSOM VALVE EXTENDER</td>
</tr>
<tr>
<td>WASHERS RUDDER SHAFT STAINLESS STEEL</td>
</tr>
<tr>
<td>HOME PAGE</td>
</tr>
<tr>
<td>DEALER LIST</td>
</tr>
<tr>
<td>PRICE LIST</td>
</tr>
<tr>
<td>PHOTO GALLERY</td>
</tr>
<tr>
<td>CONTACT US</td>
</tr>
<tr>
<td>BROCHURE</td>
</tr>
<tr>
<td>INSTRUCTION MANUAL</td>
</tr>
<tr>
<td>VIDEOS</td>
</tr>
<tr>
<td>BOAT DRAWINGS</td>
</tr>
<tr>
<td>SPECIFICATIONS</td>
</tr>
<tr>
<td>INTERIOR</td>
</tr>
<tr>
<td>WATER BALLAST</td>
</tr>
<tr>
<td>HARDWARE</td>
</tr>
<tr>
<td>COCKPIT</td>
</tr>
<tr>
<td>CONSTRUCTION</td>
</tr>
<tr>
<td>TRAILERING</td>
</tr>
<tr>
<td>ALUMINUM TRAILER</td>
</tr>
<tr>
<td>LAUNCHING</td>
</tr>
<tr>
<td>MAST RAISING</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DRAWING DATE</th>
<th>OUR PART</th>
<th>BUY UNIT</th>
<th>QTY PER BOAT</th>
<th>ANNUAL USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-Nov-05</td>
<td>400</td>
<td>PAIR</td>
<td>0.1</td>
<td>60</td>
</tr>
<tr>
<td>11-Nov-05</td>
<td>539</td>
<td>EA</td>
<td>3.0</td>
<td>1,800</td>
</tr>
<tr>
<td>01-Nov-05</td>
<td>192</td>
<td>EA</td>
<td>2.0</td>
<td>1,200</td>
</tr>
<tr>
<td>17-Oct-05</td>
<td>490</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
</tr>
<tr>
<td>11-Nov-05</td>
<td>194</td>
<td>EA</td>
<td>1.0</td>
<td>600</td>
</tr>
<tr>
<td>11-Nov-05</td>
<td>243</td>
<td>EA</td>
<td>2.0</td>
<td>1,200</td>
</tr>
</tbody>
</table>

First Previous Next Last
SAILING PERFORMANCE

POWER, WATERSKI

SPINNAKER

SAFETY

EASY TO SAIL

HOW TO SAIL

WHY THE LOW PRICE

COST TO OWN

COMPARE 26X

COMPARE HUNTER EDGE

COMPANY HISTORY

HALL OF FAME AWARD

WHY BUY A SAILBOAT

MAGAZINE REVIEWS

SUPPLIERS' CORNER

SHIPPING

EXPORTING

FACTORY GARAGE SALE

MACGREGOR 65

MACGREGOR 70 ANTHEM
2 PER BOAT

BARREL BOLT 3"

MACGREGOR PART NUMBER 102
FOR 5/16 LINE

2 PER BOAT
BLOCK - CHEEK

MACGREGOR PART NUMBER 130
FOR 5/16 LINE

2 PER BOAT

BLOCK - DOUBLE - NO JAW, NO BECKET
NO SWIVEL

MACGREGOR PART NUMBER 104
FOR 5/16” LINE

1 PER BOAT
BLOCK - DOUBLE - SWIVEL, NO BECKET
MACGREGOR PART NUMBER 106
FOR 5/16" LINE

2 PER BOAT

BLOCK - DOUBLE - WITH JAW, BECKET, SWIVEL
MACREGOR PART NUMBER 110
FOR 5/16” LINE

BLOCK, SINGLE WITH STRAP
1 PER BOAT
MACGREGOR PART NUMBER 112
FOR 5/16 LINE
APPROX 1 1/2” SHEAVE

BLOCK-STANDUP- WITH CAR FOR
1” WIDE “T” TRACK
MACGREGOR PART NUMBER 205
FOR 3/16" FLAT HEAD FASTENERS

8 PER BOAT

CLEAT - 4 INCH

MACGREGOR PART NUMBER 136
2 PER BOAT

CLEAT - CAM
FOR 5/16” LINE
MACREGOR PART NUMBER 138
6” LONG, 4 HOLES
FOR 1/4” FASTENERS
STAINLESS STEEL

3 PER BOAT

CLEAT - 6” LONG
MACGREGOR PART NUMBER 140
COTTER RING

8 PER BOAT

MACGREGOR PART NUMBER 144
FOR 1/4" FASTENERS

EYE STRAP 1/4"
5 PER BOAT
MACGREGOR PART NUMBER 147
FOR 3/16 FASTENERS

EYE STRAP - 3/16

MACGREGOR PART NUMBER 149
16 GA .060 STAINLESS, 302/304 POLISHED ONLY ON HINGE PIN SIDE

13/64" HOLES 4 PLACES

HINGE 1.5 X 1.5

MACGREGOR 26M: PER BOAT 2 EA
DRAWING DATE: NOV 1, 2005
MACGREGOR PART NUMBER: 154
16 GA .060 STAINLESS, 302/304 POLISHED ONLY ON HINGE PIN SIDE

7/32 HOLES 4 PLACES

2-3/4
1/4
1/4
1/4
1/4
1/4
1/4

1/2
1/2
1/2
1-1/2
3/8
3/8
3/8

1/4 RADIUS 4 PLACES

2/16 HINGE PIN

HINGE - HATCHES
MACGREGOR 26M: PER BOAT 12 EA
DRAWING DATE: NOV 1, 2005
MACGREGOR PART NUMBER: 155
CHROME PLATE BRASS OR STAINLESS

APPROX 2 1/4"

1 PER BOAT
HOOK - DOOR

MACGREGOR PART NUMBER 158
APPROX. 2"

1 PER BOAT

HOOK - SNAP

MACGREGOR PART NUMBER 157
LOCK - FOREDECK HATCH
1 PER BOAT
MACGREGOR PART NUMBER 162
STANDARD T TRACK
BLACK ANODIZED
9/32" HOLES HOLES FOR 1/4" COUNTERSUNK FASTENER EXCEPT AS NOTED
STAINLESS LINE HOLDERS AT EACH END
CAR WITH 2 CAM CLEATS, BLOCKS AND PAD EYE

LINE HOLDERS

13/32" HOLES FOR 3/8" COUNTERSUNK FASTENER

MAINSHEET TRAVELLER
1 PER BOAT
MACGREGOR PART NUMBER 233
PELICAN HOOK FOR 1/8" WIRE

2 PER BOAT

MACGREGOR PART NUMBER 366
1 PER BOAT

PLUG - INSPECTION

MACGREGOR PART NUMBER 176
1 PER BOAT

PUMP - GALLEY

MACGREGOR PART NUMBER 234
SHACKLE 3/16” PIN
4 PER BOAT
MACGREGOR PART NUMBER 187
SHACKLE 3/8” PIN
STAINLESS STEEL
ONE PER BOAT
MACGREGOR PART NUMBER 184
3/16" PIN

5 PER BOAT

SHACKLE - TWIST PIN

MACGREGOR PART NUMBER 188
2 PER BOAT
THRU HULL - 3/4"
MACGREGOR PART NUMBER 195
TRACK "T" 24"

4 PER BOAT

MACGREGOR PART NUMBER 240
FOR 1/8” WIRE

1 PER BOAT

TURNBUCKLE - SINGLE JAW, LEFT HAND

MACGREGOR PART NUMBER 198
1/4" HOLES
STAINLESS STEEL

U BRACKET
3 PER BOAT
MACGREGOR PART NUMBER 540

3"
FOR 5/16 LINE

2 PER BOAT

WINCH LEWMAR 6A OR EQUIVALENT

MACGREGOR PART NUMBER 329
1 PER BOAT
WINCH HANDLE
MACGREGOR PART NUMBER 328
MacGregor 26... Factory website for the 2009 MacGregor 26', $22,900 trailerable sailboat, 24 mph, the WORLD'S best selling cruising sailboat.

<table>
<thead>
<tr>
<th>TABLE OF CONTENTS: MACGREGOR 26 FACTORY WEB SITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RETURN TO HOME PAGE</td>
</tr>
<tr>
<td>PHOTO GALLERY</td>
</tr>
<tr>
<td>PAGE 1 MISC. PHOTOS</td>
</tr>
<tr>
<td>PAGE 2 MISC. PHOTOS</td>
</tr>
<tr>
<td>PAGE 3 MISC. PHOTOS</td>
</tr>
<tr>
<td>PAGE 4 SAILING IN GALE FORCE WINDS PHOTOS</td>
</tr>
<tr>
<td>PAGE 3 SEATTLE OWNERS' PARTY</td>
</tr>
</tbody>
</table>

SAILING, POWERING, AND WATERSKIING

<table>
<thead>
<tr>
<th>SAILING PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWERING AND WATERSKIING</td>
</tr>
<tr>
<td>SPINNAKERS</td>
</tr>
<tr>
<td>EASY TO SAIL</td>
</tr>
<tr>
<td>SAFETY</td>
</tr>
<tr>
<td>HOW TO SAIL, BY ROGER MACGREGOR</td>
</tr>
</tbody>
</table>

COSTS AND PRICING

<table>
<thead>
<tr>
<th>WHY THE LOW PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSTS, MAINTENANCE AND STORAGE</td>
</tr>
<tr>
<td>PRICE LIST AND OPTIONAL EQUIPMENT</td>
</tr>
</tbody>
</table>

ODDS AND ENDS

<table>
<thead>
<tr>
<th>COMPANY HISTORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACGREGOR 65</td>
</tr>
<tr>
<td>HALL OF FAME AWARD, JANUARY, 2000</td>
</tr>
<tr>
<td>WHY BUY A SAILBOAT</td>
</tr>
</tbody>
</table>

MAGAZINE REVIEWS OF THE 26

| TRADE-A-BOAT MAGAZINE NEW ZEALAND 2005 |
| NOR'WESTING MAGAZINE REVIEW, 2006 |
| BOATING NEW ZEALAND |
| SAILING MAGAZINE - BOB PERRY REVIEW |
| BOAT OWNER MAGAZINE 2006 |
| OFFSHORE MAGAZINE REVIEW |
| CRUISING MAGAZINE REVIEW |
| SAIL MAGAZINE REVIEW |
| NOR'WESTING MAGAZINE REVIEW, 2004 |
| BAY AND DELTA YACHTSMAN REVIEW |
| BOAT OWNER MIDDLE EAST REVIEW |

SUPPLIERS’ CORNER

<table>
<thead>
<tr>
<th>ITEMS THAT WE BUY FOR THE MACGREGOR 26</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACTORY GARAGE SALE: BARGAINS</td>
</tr>
<tr>
<td>FACTORY GARAGE SALE</td>
</tr>
</tbody>
</table>
TABLE

COST TO OWN

COMPARE 26X

COMPARE HUNTER EDGE

COMPANY HISTORY

HALL OF FAME AWARD

WHY BUY A SAILBOAT

MAGAZINE REVIEWS

SUPPLIERS' CORNER

SHIPPING

EXPORTING

FACTORY GARAGE SALE

MACGREGOR 65

MACGREGOR 70 ANTHEM
SAIL MAGAZINE REVIEW

MacGregor 26... Factory website for the MacGregor 26', $22,900 trailerable sailboat, 24 mph, the WORLD'S best selling cruising sailboat.

SAIL MAGAZINE EVALUATION OF THE MACGREGOR 26

Note: The following article applies to the 26X, recently replaced by the 26M. However, the boats are very similar, and many of the comments relating to the X will be applicable to the M. We will post new reviews and comments on the boat as they are received.

Article appearing in the February, 1996 issue

Written by Chris Caswell, edited by Charles Mason

While Roger MacGregor's boats haven't always been the most beautiful or opulent, they've always been well thought out and very competitively priced. This new 26-footer is no exception. MacGregor is so enthusiastic about the boat's potential that he has stopped production on his other models to concentrate on this one.

Construction of both hull and deck is solid hand-laid fiberglass, and just about everything on board is made from molded sections to minimize cost-intensive handwork. The result may seem spar-tan to some, but it makes the boat easy to clean and maintain.

The hull has been designed to plane at high speeds under power and can carry up to a 50 horsepower outboard. That power can move the boat at speeds in the mid-20s, giving you the performance to add water-skiing to your water-sports repertoire. Water ballast provides stability afloat and minimum trailering weight ashore.

The cockpit is more than 6 feet long, and a pedestal-mounted Morse wheel-steering system maximizes cockpit space. The helmsman's seat hinges up for access to the outboard and for easy boarding at cockpit level. The raised cabintop's forward hatch provides access to the bow, where there is a large anchor locker and bow pulpit.

The main cabin has 6 feet of headroom. The dinette and settee can convert to a double berth, while the bow area is devoted to a good-size V-berth. A king-size bed with sitting headroom is located under the cockpit. The berth cushions are a bit thin, however.
Even with a 50-horsepower Tohatsu outboard, the boat sailed quite well, especially when reaching and running. With the ballast tank full and the board down, going to windward was much more efficient than I had expected. The long, thin centerboard works well, and the twin rudders remain fully submerged even when the boat is heeled.

When we fired up the outboard, we discovered another side of the boat's performance potential. After pivoting the rudders up and reconnecting the steering system to the engine, we had the maneuverability and speed of a powerboat. We reached 24 mph, and the boat cruised along happily at 21 to 22 mph. That speed can get you to the next port quickly, and it's a nice safety feature if bad weather approaches.

The 26X is an innovative design. The price is good, and the boat has a remarkable range of performance and well thought-out accommodations. If you're looking for an easily trailered family cruiser for about $16,000, including sails, the MacGregor 26X should earn a spot on your short list.
MacGregor 26... Factory website for the MacGregor 26', $22,900 trailerable sailboat, 24 mph, the WORLD'S best selling cruising sailboat.

BAY AND DELTA MAGAZINE EVALUATION OF THE MACGREGOR 26

Note: The following article applies to the 26X, recently replaced by the 26M. However, the boats are very similar, and many of the comments relating to the X will be applicable to the M. We will post new reviews and comments on the boat as they are received.

(PHOTOS ARE NOT INCLUDED TO SAVE DOWNLOADING TIME)

The following article appeared San Francisco based Bay and Delta Yachtsman, in the December, 1997 issue. It was written by Ron Menet, MACGREGOR 26X- FAST UNDER POWER OR SAIL

It had been a terrific day of sailing on San Francisco Bay. A wonderful westerly breeze had allowed us to sail all the way to the Carquinez Bridge, making an average of about ten knots. We came about ready for a pleasant run back to our Alameda marina. Everything was perfect-a nice breeze, good company, a nice boat-when suddenly, and without warning, the wind simply died. Not a breath was stirring and San Pablo Bay was like a mirror.

We drifted along for a while, hoping for a return of the wind, but eventually we fired up the auxiliary engine and headed for home. Our speed for this trip would never exceed six knots. The sun set hours before we reached our marina and an idyllic day had deteriorated into a long and painfully slow trip home. My guest - no sailor - asked, "Why can't they put a big enough engine in a sailboat to make it go faster?"

"Because it's a sailboat," I answered. "Sailboats don't go exceptionally fast under sail or power."

The above is a fictitious tale. It never happened to me. I'm a powerboater, not a sailor- although I was a sailor a long time ago. But, over my years on the water, variations on the story have been told to me at various times and locations. I recall one sailor in particular, sailing the San Juan Islands, who actually found himself
going backwards under power due to the force of the tidal current. In another more recent example, I voyaged 450 miles in the company of a 42-ft. sailboat that plodded along at a scant 6 - 7 mph all day, under power.

There are a few exceptions to that slow boat statement but, overall, it holds water. The hull of most sailboats is a displacement design; meaning the hull pushes through the water rather than lifting and planing across the water's surface. Sailboats are also heavy boats with cast iron or lead in their keels to provide stability under sail. Pushing all of this through the water takes a lot of energy. But, within reason, placing a larger more powerful engine in such a hull produces only small increases in speed, while dramatically increasing fuel consumption. The slant term for a sailboat auxiliary engine is "kicker"; an engine designed for occasional use only, usually for docking maneuvers or for transiting narrow twisty channels.

Many sailors have longed for a boat combining all of the features of a cruising sailboat but capable, under power, of getting them to the breeze, the next port, or back home when the wind dies, in a reasonable period of time.

YOU CAN HAVE YOUR CAKE TOO

Just such a boat exists in the form of the MacGregor 26X. Capable of 24 mph with a mere 50 hp outboard motor, as well as having a good turn of speed under sail, she seems like a perfect combination. I originally saw the 26X at the recent NCMA boat show at Jack London Square, where she sat on her trailer in one of the tents nestled amongst the water ski, fishing, and runabout boats. I spoke with Arena Yachts representative Eric Lowe who waxed glowingly of the boat. After a quick tour I knew this was a boat I had to test for myself. Gene Arena, owner of Arena Yachts of Alameda, Ca, was most gracious and accommodating in arranging for our on-the-water session in the 26X.

When I arrived at his office, Gene explained all of the philosophy behind the building of the boat and the means used by MacGregor in bringing those concepts to reality.

First was weight. Weight is important for a number of reasons: 1) they wanted a boat that could be easily towed by the average family sedan; 2) a lighter boat is easier to launch and retrieve on the trailer; 3) every pound removed during production is one less pound...
to move on the road or water.

The finished boat weight a mere 2,250 lbs., empty. The trailer, and empty boat combined weigh in at about 3,000 lbs; well within the towability range of many family sedans.

To achieve this bantam weight was no easy task. Every item on the prototype was tested for strength and weight. In every instance lighter weight, but equally strong, alternatives were considered. The result is a boat totally without frills. You'll find no fine joinery in the cabinets or brightwork topsides. Other than for the covers on a few storage hatches in the cabin, you'll find no wood on the boat at all. In fact, the boat is built from three main components - a hull, a hull liner, and a deck. No chopper guns are utilized, as the layers of lamination are all hand laid using cloth, mat and roving.

More weight savings can be found in the rigging which, but most sailboat standards, is quite light. You probably wouldn't want to venture into the Roaring 40s with this boat but, for Bay-Delta, or lake sailing, and coastal cruising in the right weather, she'd perform just fine.

After weight came the underwater hull shape, in this case a rounded forward section gives way to a nearly flat planing section aft with almost no deadrise at the transom. This allows the boat to operate in a displacement or semi-displacement mode while under sail but still rise up on the planing sections when under power.

The boat incorporates a fully-retractable centerboard and a pair of transom-mounted rudders, for use when sailing. When under power, these are unnecessary, as the outboard motor is used to steer the boat.

THE BALLAST IS FREE

As mentioned, there is no lead or cast iron ballast. Ballast for sailing is provided by water stored in two reservoirs beneath the cockpit deck and the forward part of the cabin. Converting the boat from a power cruiser to a sailor is quite simple. A tank sealer (similar to the plug used in transom drains) is removed from the stepdown into the cabin and a waste gate (identical to those used in RVs at the outlet of their holding tanks) located on the transom is pulled open. Water begins to flow into the hull through the waste gate and flows forward through hollow stringers.
In a short 6 to 8 minutes, the tanks are full and the boat has taken on 1,500 lbs. Of free water ballast - ballast you don't have to haul as you power or tow the boat. After sailing, fire up the engine, open the plug and waste gate and, because of the boat's slightly bow-up attitude, the water flows back out the transom. It's an ingenious system that has been adopted by other trailerboat builders.

Ballasted, the boat is remarkably stable. In fact, she is self righting. With the positive flotation built into the hull she's also unsinkable. With me standing on a cockpit gunwale, she leaned every so slightly, and I'm a big guy.

Below deck the boat is remarkably roomy for a 26-footer. You could even sleep six folks down there in beds, but I wouldn't. Six adults on a 26-ft. boat is at least two adults too many. Under the cockpit is an enormous sleeping area. It's actually larger than a standard king-sized bed. Sitting headroom is provided at it's forward end on both sides. Just inside the cabin access hatch on the starboard side is the private head compartment with solid door. This tiny room contains a built-in sink with water pump and a Porta-Potti. Forward of the head, but still on the starboard side of the cabin, is the dinette, also convertible to sleeping for two or sitting for up to five. The dinette seating is raised enough to allow an outside view through the side windows or the two located at the forward end of the cabin. You can place flat charts or family photos under a clear plexiglass panel in the table. Forward is a full double berth in the V.

The starboard side of the cabin, between the V and the large bunk aft, is the galley console. It contains a one-burner alcohol stove, a sink with water pump, a storage or pantry locker, and several shelves and bins on its front for other gear.

It's all very neat and compact. Pleasant woven fabrics cover all of the cushions which, should the need ever arise, can all be removed and the interior of the boat washed out with a hose. There's absolutely nothing down here other than the cushions which could be harmed by water.

The overall effect, however, is very plastic. The hull liner has a white gelcoat finish which is not the prettiest below-deck material to look at. The sole is also white gelcoat covered in a removable carpeting. One could, I suppose, begin to cover some of this plastic with wall coverings or carpeting, but you'd only be adding to the weight of the boat - a big no, no - and the chances of mildew and other nasty stuff. Basically, if you like the boat, you probably won't be much bothered by the gelcoat interior.
So how does it sail? We powered out of the Oakland Estuary at between 15 and 19 mph onto San Francisco Bay looking for some wind. The 40 hp Honda four-stroke outboard seemed completely up to the task. With 50 horses, I've seen video of a sistership pulling a water skier. In every way she felt and acted like most powerboats of this size I've handled previously. I took her through several tight 360-degree turns, several figure eights, and crossed the wakes of several large boats finding nothing out of the ordinary.

The Bay, between the Estuary and the Bay Bridge was glassy calm. Continuing under the bridge towards Alcatraz Island we begin to find a little breeze and, somewhere between Alcatraz and Pier 39, we picked up enough that Eric suggested we kill the engine and try sailing. We flooded the ballast tanks, dropped the centerboard and rudders and hoisted the sails. The sail hoist was made especially easy by the roller-reefing of the 150 percent genoa (optional). With the roller equipment, the jib or genoa simply roll themselves up like a window shade, unwinding just as easily. With this setup, trips to the foredeck are minimized or eliminated. Mainsail hoisting is done from the side deck or cabin top.

We mutually agreed the wind was blowing at only 6 to 8 mph, but I soon had the 26X moving at better than 5mph toward Alcatraz (I've seen video of this same model boat in 25 mph winds and handling them nicely under reefed sails). Heading into the breeze she seemed to point quite normally and, off the wind, picked up a little speed. I would have liked more wind in order to better evaluate her sailing performance, but the zephyrs of the day were all that were available. Blame it on El Nino; it's been blamed for everything else.

RACE, ANYONE?

It's said that whenever two sailboats come together a race ensues, and I proved the saying. A 33-footer sailed by on the opposite tack and we came about to give chase. She pulled away (more sail and a longer waterline) but not rapidly. The manufacturer claims speeds of up to 18 mph under sail and spinnaker in heavy breezes.

Operating the boat is very comfortable. The optional suntop or bimini can be put in place quickly while operating the boat under power or sail. All of the sheets and halyards are in the cockpit, making single-handing her a breeze. The two small Lewmar sail winches are located...
on either side of the cabin top. The standard wheel steering and helmsman seat are comfortable and natural feeling and the small binnacle is large enough to accommodate some instrumentation. The after bulkhead of the cabin structure could hold even more and still be close enough to be readable by the helmsman.

So, overall, impression was very positive. Consider for a moment the whole package: 26-ft boat, sails, motor, and trailer, at a list price of less than $23,000. That's an attractive package. Combine that price with a nice cruising sailboat that can be quickly and easily converted into an eager powerboat and you see why more than 36,000 boats have been sold by MacGregor. You could buy a more expensive boat, a fancier boat, but if you consider bang for the buck, you may not find a better boat for the average Bay or Delta, or lake cruiser. You'll also probably go a lot slower under power than you would in the MacGregor.

Speaking of the trailer, it is built by MacGregor specifically for this boat. It looks a bit light, but years of use and experience by thousands of owners have shown it to be up to the task. It is a one-axle trailer with guide posts at its stern and have a large V-shaped fitting for the bow making loading a simple drive-on operation. At the winch end of the trailer there is even a ladder to make boarding the boat from the trailer an easy task. Neither you nor your tow vehicle need to get wet in launching or retrieving this boat.

THE BIG CHOICE

Your choice of motor and propeller will impact the cost of the boat, obviously. You'll have to face the two-versus four-stroke controversy, though most engine manufacturers are coming out with clean running, fuel-injected, two-strokers now. If you opt for a little kicker of ten horses or so, the price would come down. If, on the other hand, you choose an outboard in the range recommended by the builder - 40 to 50 hp - you'll spend a little more but get the satisfaction of using all of the capabilities built into this interesting boat.

The boat comes equipped with a full set of working sails - main and jib. Optional sails from the factory include the 150-percent genoa and a spinnaker that requires no spinnaker pole. This latter means no one has to be on the foredeck during jibing maneuvers.

The rigging, as I mentioned earlier, looks a little light, but that could be modified by an owner so inclined, with a mind to keeping the
weight in check. The mast can be raised and lowered by one person, either directly or through the use of the optional pulley system and sail winches. Once up and in place, only the forestay needs to be fastened at the bow, since all of the other shrouds and stays remain attached at all times. It's so easy, that out on the water you might do it just to get under a bridge to see what's on the other side.

Heading back under power to the Arena Yacht Sales dock in Alameda, I reverted to a typical powerboat form, chuckling as I passed the numerous sailboats slogging their way home on their kickers. You may not always want to steam along at 19 to 25 mph but it's sure nice to know you can if you want to, and it's fun to wave at all of the sailboats you leave in your wake.

The MacGregor 26X deserved a close look if you're in the market and you can get one at Arena Yacht Sales in Alameda. Call Gene or Eric for an appointment at 510/523-9292.
The McGregor 26 is one of the few boat designs that blends sail and engine power into a neat package. Paul Smith went to see if the concept is a success.
THE TRAILERABLE POWER SAILER

To many people in the boating world the concepts of sailing and power boating are at opposite ends of the boating spectrum and "ne'er the twain shall meet"! A sail boat may well use an engine as an auxiliary power source in the interests of safety and convenience, and there are examples of power boats that use sails as an auxiliary power source, although these are most likely to be larger, non-trailerable vessels.

The MacGregor 26 is one of the few designs that blends sail and engine power sources seamlessly into a trailerable package. Such is the commercial success of the MacGregor 26 that the boats are sold around the world – more than 35,000 to date – and production from the US-based factory averages one boat every four hours. In New Zealand, MacGregor is represented by Christchurch-based Haven Yachts NZ Ltd under the direction of Neil Barnett.

Design
A great deal of thought has gone into the design of the MacGregor 26 to ensure that not only would many of the shortcomings of other trailerable yachts have been eliminated or mitigated, but that the boat would be a
competent performer under sail, would be comparatively easy to rig and sail and, most importantly, that it would be capable of delivering excellent performance with up to a 50hp outboard motor fitted without overly compromising sailing capability.

One of the requirements of a trailer boat is that it must be relatively easy to launch and retrieve. While many trailer yachts require the trailer to be immersed so deep in the water that rear sections of the tow vehicle are also subjected to immersion, the MacGregor trailer has been designed so that the vessel can be floated on and off the trailer without requiring the crew or tow vehicle getting wet. With a typical towing weight of around 1600kg, the MacGregor 26 does not necessarily require a heavy duty 4WD tow vehicle as would almost certainly be the case with a powerboat of similar dimensions.

In order to keep the towing weight of the vessel as low as possible while retaining the required ballast for sailing, MacGregor developed a water ballast system. Once the vessel has been launched, a transom valve is opened allowing water to flood a ballast tank in the bottom of the hull. When the tank is full, the valve is closed. This equates to 333kg of additional ballast that makes the craft stable and self-righting whether under power or sail. The tank can be emptied in about four minutes when the vessel is retrieved on to the trailer or when under power.

Attention has also been paid by the designers to ensure rigging the MacGregor 26 for sailing is as stress-free as possible. The mast is raised or lowered using a small brake winch mounted on the support pole. The mast is light and the winch system can be left in place while sailing. The forward mast support wire is the only item of the rig that is disconnected when raising or lowering the mast.

The rotating mast increases the power of the mainsail and the concept has been well proven on modern sailing catamarans. The MacGregor system incorporates conventional spreaders with upper and lower shrouds and allows the boat to sail well on the mainsail alone if desired. A roller furler allows the size of the jib to be controlled from the cockpit. A long, deep daggerboard is controlled by a line leading to the cockpit and can be pulled up into the boat when under power, beaching or downwind sailing.

Steering on the MacGregor 26 is accomplished by the use of twin rudders. These can be raised and secured when the vessel is under engine power. The twin rudders allow good control even when the yacht is heeled over as one rudder will always be deep in the water. The rudders and the outboard engine are steered by a large stainless steel wheel mounted on the centrally located cockpit pedestal that also houses the engine remotes. The helm seat is built into the outboard motor cover, which hinges up to give access to the engine well and boarding ladder on the transom.

The hull design incorporates a shallow draught vee bottom for higher speed under engine power and greater stability while the sharp entry slices through the waves efficiently.

Layout

Within dimensions of 7.87m LOA and 2.29m beam, the MacGregor 26 offers
plenty of internal space and volume for family or two couples cruising. For those who don’t mind compactness, the boat will actually sleep up to six adults in comfort. There is a large double berth for’d with huge storage compartments under.

To port, there is a long settee berth, again with storage under, while to starboard, just aft of the enclosed head compartment, the dinette converts to another full length single berth. Each of these seats has storage under with the aft seat having provision for an ice chest.

A huge double/queen size berth is located under the cockpit aft and is accessed either side of the steps leading up to the cockpit.

An innovative feature is the one-piece moulded GRP galley unit. This incorporates a sink and optional alcohol-burning stove as well as cupboards for storage. What is appealing is that the galley is mounted on sliders, allowing it to be moved aft and locked in one of three positions. This greatly extends the amount of sitting space in the main cabin when cooking is not taking place. There is full headroom throughout the cabin area and the large rear berth has sitting headroom over a wide area.

The neutral tones throughout the below deck area enhance the feeling of space. The daggerboard trunk blends well into the design forming part of the mirrored bulkhead at the for’ard end of the dinette. The for’ard berth area has a
plenty of foot space while the centrally sited helm-seat allows good vision all round. Access to the foredeck is secured by a strong stainless steel pulpit and the anchor locker is large enough to accommodate the anchor and plenty of rope/chain. Lifeline rails surround the boat.

Construction
The MacGregor 26 is produced in a state of the art facility where advanced computer modelling is used in all phases of the design work, as well as computer integrating many of the production processes. The company focuses on the production of just one model so resources are concentrated on well engineered production tooling and developing a specialized labour force.

Each boat is built of hand-laid solid GRP laminates with additional reinforcements at all stress points. A combination of uni-directional woven rovings and smooth cloth are used in conjunction with high strength resins to form a lightweight but strong laminate. Four main moulds are used to form the vessel – the hull incorporates the daggerboard trunk and water ballast tank, while the hull liner, the deck and the deck liner are the other major components. The hull and deck are joined using 3/16 bolts at four-inch centres in conjunction with a large foredeck hatch for additional light and ventilation. Access to the cabin from the cockpit is via a long sliding hatch and stainless steel ladder.

The cockpit is self draining through the open transom. There are two full-length cockpit seats either side with compartments under for storage of two 12-gallon fuel tanks. The pedestal-mounted helm allows

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>MACGREGOR 26</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOA:</td>
<td>7.87m</td>
</tr>
<tr>
<td>LWL:</td>
<td>6.915m</td>
</tr>
<tr>
<td>BEAM:</td>
<td>2.29m</td>
</tr>
<tr>
<td>DRAUGHT:</td>
<td>0.3m (board up) to 1.75m (board down)</td>
</tr>
<tr>
<td>WEIGHT:</td>
<td>1264kg (less ballast)</td>
</tr>
<tr>
<td>WATER BALLAST:</td>
<td>533kg</td>
</tr>
<tr>
<td>PERMANENT BALLAST:</td>
<td>136kg</td>
</tr>
<tr>
<td>TRAILER WEIGHT:</td>
<td>322kg</td>
</tr>
<tr>
<td>CABIN HEADROOM:</td>
<td>1.83m</td>
</tr>
<tr>
<td>BERTHS:</td>
<td>6</td>
</tr>
<tr>
<td>FRESH WATER:</td>
<td>18.9L</td>
</tr>
</tbody>
</table>
high grade adhesive to ensure a watertight seal. The quality of the glasswork and overall finish is pretty good for a high volume production boat.

The rig uses stay adjusters rather than turnbuckles and double nicopress fittings for the wires supporting the mast that are considered to be stronger and more reliable than swaged fittings.

Performance & Handling

I do not pretend to be an expert in evaluating the performance and handling capabilities of any yacht. However, one thing I do know is that a light boat will out perform a heavier boat of the same size and with the same power (motive or sail). The MacGregor 26 is not a heavy boat for its size and therefore appears to perform well with moderate sail capacity.

The option of an outboard engine of up to 50hp transforms the MacGregor 26 from a yacht into a fully fledged powerboat. Engines of greater than 50hp could be fitted to the vessel, but this is the level deemed by the designers to offer sufficient performance without compromising the boat’s sailing capability with excessive weight. A 50hp Yamaha four-stroke outboard engine is quiet and fuel efficient and endows the MacGregor 26 with a top speed of around 22mph – just enough to pull a waterskier or water toys.

The outboard engine also allows the vessel to access destinations that, say over a limited time such as a weekend, a conventional sailboat would not have the time to reach since it travels comparatively slowly. When under motive power, the rudders can be retracted so that steering is conventional by the motor only, and the daggerboard can be retrieved up into the hull so that draught is reduced significantly.

Conclusion

The MacGregor 26 is certainly a versatile craft offering a range of opportunities to experience a boating lifestyle. It is a vessel that lends itself to family cruising offering plenty of internal space, yet also has sufficient performance under engine power to pull water toys. Since the boat is trailerable, many waterways are opened up for exploration and enjoyment and a large 4WD is not necessary to tow it.

A typical MacGregor 26 sold in NZ will set you back around $86,000 depending upon the number of boxes ticked on the options list. Given the versatility on offer, this represents good value for money. The boats are supplied on a solid, steel framed single axle braked trailer.
Did you hear the story about the sailor sailing singlehanded in his MacGregor 26 when he had a heart attack? He put the pedal to the metal and powered back to the dock at speeds in excess of 20 knots where he was met by paramedics. He thinks the MacGregor saved his life. In my own 26-foot he would have powered back at a sedate 5.5 knots and probably died en route.

But we have a new MacGregor 26 now. The new 26 has been modified and improved for even better performance and comfort. Roger MacGregor does all the design work for his plant. Roger was kind enough to send me a 48-inch long model with the brochure for this review. Thanks, Roger.

“Sails better than a powerboat and powers better than a sailboat,” they say. In fact the new 26 is a respectable sailer. I have a client who, after owning an original 26, fell in love with sailing and bought a Saga 35. If the 26 had been such a bad boat he would have never bought another sailboat. While the aesthetic package may not be to your liking and the 50-horsepower outboard auxiliary may be contrary to what you think of as a sailboat, don’t underestimate these boats. To a great degree they are designed to entice powerboaters who think they might like sailing into giving it a try. More than 6,000 26s have been sold to date. That’s about three a day for six years. The boats are EEC-approved and about a third of the production is shipped overseas.

The new 26 has more shape to the hull and an additional 300 pounds of internal lead ballast. Deadrise has been increased from 8 degrees to 13 degrees to give the boat a softer ride and get the VCG lower for stability. The deep chest of the 26 flares to a flat run for planing performance. The original 26 had a centerboard and that has now been replaced by a high-aspect-ratio daggerboard. The smaller slot of the daggerboard has reduced drag and improved speed under power and sail. This deep daggerboard should work to give the 26 good on-the-wind performance as long as you keep the boat on its feet. The brochure says 22 mph under power.

If I use 2,750 pounds as displacement I get a D/L of 101. L/B is a modest 3.25. Draft with board up is 12 inches and with board down 5 feet, 9 inches. The internal ballast is augmented by 1,150 pounds of water ballast in a tank that runs on centerline from the daggerboard trunk to the transom. Built-in foam flotation will keep the 26 afloat in case of damage. Before you begin casting asparagus at the performance of this boat just imagine the boat with 10 inches less freeboard and a more svelte cabintrunk. All the proportions are there for a decent sailing boat.

The layout is clever and uses a big mirror forward of the galley to give the effect of a totally open, bulkhead-less layout. In fact, the head is enclosed, so there are bulkheads. Roger has worked two double berths into this layout, settees and a mini galley. There is no privacy for sleeping but I think adding more bulkheads and doors would have destroyed this interior. It’s designed for small families where privacy is not required. The cockpit is large but that little wheel, while I’m sure it works, looks too small for me.

“But what about those aesthetics, Bob?” I think the boat looks fine. While I would not call it beautiful or handsome I do prefer the new model with its stepped cabintrunk. The look is more interesting and there is better headroom below. I wouldn’t put this boat alongside the latest Chuck Paine design and compare the aesthetics. The 26 shows a hybrid power/sail look that won’t work on many boats. The wraparound windows and lack of side decks are right out of the powerboat school. I think you have to put this boat into an aesthetics genre of its own.
SPANISH CONQUEST
Spain’s Rodman 56 takes on the Italians

“You have to put your emotions in a box, applying logic and experience. Panic kills”

Pete Goss, MBE
This peninsular is the most perfect sailing environment,” beams Raymond Sabbah, Director of Sea Dunes Sailing. “You can almost sail all year round and there are so many different places to go.” I look at him questioning, as this seems totally at odds with what most people tell me about sailing in the Arabian Gulf. “If the weather isn’t right,” he continues, “you just put the MacGregor up on the trailer and drive off to the Fujairah coast, up to Oman, wherever you want.” The US-built MacGregor 26 is not a new boat, having been in production since the 1960s, but with a 2005 model recently released it is by no means past its sell-by date. In essence, the MacGregor is a happy compromise between a sailing yacht and a powerboat, which can be launched from a trailer or left fully rigged on a pontoon berth. “Though even with antifouling, we have found it is worth keeping her on a trailer in the yard because of the high fouling,” explains Raymond.

Using water ballast and a daggerboard for stability, the MacGregor is easily rigged with its light aluminium wing mast, which is raised and lowered with an innovative cradle. Sporting a 50 hp outboard engine (the best power-to-weight ratio model) between the twin dagger rudders on the transom, the sailing characteristics of the MacGregor can be quickly translated into a planing powerboat, with the daggerboard and rudders raised, and the water ballast dumped through a self-draining mechanism to allow the boat a 20 knot top speed.
Raymond didn’t set out to be a boat dealer; he, his brother and a friend were simply looking for a sailing weekender that they would find easy to handle, and would be able to trailer on land so they could go exploring without having to put in long passages between ‘the interesting bits’. Finding the MacGregor on the internet, Raymond was offered the dealership if he bought two boats – obviously getting them at dealer rates. It seemed like too good an offer, particularly when without even trying he was able to sell six in the first year. Juggling a fulltime profession and commissioning the yachts at the weekend, after two years Raymond decided to dedicate his time to the ever-growing fleet of MacGregors and their owners. For while MacGregor might be better known in Europe for its trailer sailing, Raymond is particularly looking forward to the UAE debut of the MacGregor 75, which he hopes to bring in next year.

But in the meantime, especially with the lack of water berths available, he is finding a growing interest in the little MacGregor, as it is an ideal boat for the individual or small family that wants to get into sailing without having to sacrifice a massive investment in capital. “The Dubai market is not yet settled,” explains Raymond, “so many companies have started up and jumped on the high end of yacht sales. But I don’t think that is where the market is. Those that are on average incomes will be the market. The average person, a proper keelboat is a massive investment, which most people will then have to add to their get rid of list when they leave Dubai. The MacGregor can simply be put on its trailer and then into a container, and shipped anywhere in the world.”

As Raymond related the delights of trailer sailing in Oman (told overleaf), the concept of trailer sailing began to take shape as an adventurous alternative, especially for those who like the whole camping in nature idea. Anchoring just off the beach with its flat bottom and 30 cm draft, dancing around a beach bonfire, lying on deck looking up at stars... but what is the boat actually like? Do you have to moor near a beach simply to get off in a hurry?

Dwarfing the J/225 beside it on the pontoon, not so much in length but certainly in freeboard, the MacGregor looks deceptively larger than her seven-metre length. With the under-sole water ballast full, the high freeboard does not offer anything but protection from the ravages of the ocean’s surface, particularly when sat on the
transom helm seat or deep within the cockpit. High bulwarks further enclose and protect the cockpit from flying spray, making it a great family boat for younger children.

Stepping down the steep wooden companionway, the simplicity of the MacGregor comes to the fore – an open plan layout, with bench seats down both sides and a central unit around the daggerboard casing and coachroof-stepped mast, which incorporates the seawater heads. As well as the sailing advantages of a daggerboard, the interior space also benefits a vertical-raising set-up, as opposed to catering for an entire centreboard case that would split the cabin in two. While the newly-released 2005 MacGregor 26M has an upgraded interior, with an innovative sliding galley bench mechanism that can be moved up and down the port side, this older model simply has a galley area that can be fitted out depending on the needs of the owner.

Because of Raymond’s beach cruising, he decided against fitting a gas burner, preferring to grill his food ashore. But by leaving the space open, the potential owner sees a white canvas from which they have the freedom of customisation. While the saloon can be turned into a large double bed, the forepeak makes an ideal single or children’s space, with the area under the cockpit being used either as another large double berth or for storage. I suppose it was this open and free nature of the interior that got me thinking of early Beneteau and Jeanneau models, which only provided space for the odd sail bag to be used as bedding – how times have changed. Does increased luxury set us free or further bind us?

Skipping past the heads, that just about had standing room, and returning on deck, it was time for a quick sail. The wind topping 20 knots, it was a fantastic time to see how manoeuvrable the MacGregor was at close quarters with a wind on her topsides. The water ballast had already been filled by opening the transom valve and letting gravity take its course, providing almost 50 per cent more stability – so much so that fully filled the MacGregor is self-righting. Though we would later open the valve to drain it under power, it was for now closed to secure its load.

Sliding easily out of her berth, it was apparent she was more than catered for by the 50 hp engine, which turned her quickly and kept her nose into wind. Rigged with a dinghy’s simplicity, the topping lift moves forward to become the main halyard, keeping the rigging outside of the mast. Though I had a little problem with the mainsail feeder, the main went up quick enough, despite the wind, and she was soon heeling over as the daggerboard and twin rudders bit against the main’s pressure. With both operated by lines running to the cockpit, each can adjusted to depth and sailing conditions easily.

Stopping the engine, it was fun to find she had the manoeuvrability and responsiveness of a large dinghy, like a Wayfarer. This may not be as instant as a Laser, but is more than adequate for cruising or short tacking within a harbour. The advantage of the light rotating mast is that it automatically aligns itself to the proper angle of the wind, guiding the main’s luff with it. This helps the sail to set smoother, perform better and makes sailing under main alone more practical. The foresail is easily unfurled with the roller-rolling mechanism from the cockpit, meaning that as soon as the main is up and set, the decks can be left clear.
I was surprised at how much like a dinghy she was to sail. And that is no bad thing — on the contrary it makes the MacGregor the perfect boat for the learner sailor, or the person who wants to learn but also wants to get out on the water as quickly as possible. Forgiving under the wheel helm, on the dropping of the main and the electric starting of the outboard, she very quickly had the manœuvrability of an RIB as we went out into the growing swell outside the protective breakwater at DOSC. Surfing back in on the waves at 15 knots, the true capabilities of the boat became clear. Like an urban SUV, she could cope with most coastal weather conditions, but above all was a smooth and simple platform while doing so.

By owning a MacGregor himself, and spending his weekends and test sails on it, means that Raymond has become exceptionally knowledgeable about the boat. Not simply in regards to handling, but also in terms of finding accessories, spare parts, modifications etc. “The MacGregor is a simple boat, and it is one for everyone. It highlights the simple pleasure of being out on the water while avoiding a lot of the problems associated with boat ownership.” The sailing mechanism, like the interior, is both basic and completely open for owner customisation. Simple running gear prevents breakages or too many strings on the deck, but if an owner wanted a complete lazy-jack system suspending their beautifully flaked main, there would be more than enough scope to make it happen.

Verdict

There is no doubting the MacGregor is a simple boat that some sailors would think below them. However, for the person who wants the flexibility of launching wherever they want, the ability to go from sailing to high-speed powering within five minutes and yet still have enough room inside to sleep a number of people in comfort, the MacGregor fits the bill. Easy to sail, easy to handle and bulletproof. And all at a great price.
Sea Dunes Sailing’s Raymond Sabbath describes his MacGregor voyage to Musandam.

February is the ideal time for sailing in the Gulf. With a three-day weekend at our disposal and a craving to explore the Musandam Peninsula, my friend and I found ourselves at DOSC at 8 am to collect the MacGregor for our trip. Pulling her onto its trailer is child’s play, a three-step ladder on the front of it helps boarding, and guides allow the pilot to simply drive fully onto the trailer and winch position. Bringing the mast down is equally simple, allowing the whole procedure to be completed in less than an hour. With food, water and fuel provisions loaded onboard we were then ready to head for the port of Dibba on the Indian Ocean.

At 11 am, we arrived. The wind was blowing strong, at 25 to 30 knots, and we decided to raise the mast ready for launch, then take lunch, hoping the wind would decrease as forecasted. Dibba is an interesting place to visit, with fishermen off-loading their catch on the pier, and an impressive row of sharks soon covered the ground. At 3 pm the situation remained unchanged, and the sea had become extremely choppy. With no hope of launching that afternoon, we locked the boat on its trailer and left for a tour of Dibba and its sister town namesake in Oman. There we witnessed an auction of fish held straight off the dock, an incredible array of colours and shapes from beneath the sea. At sunset, the weather situation was still blustery, so we decided to camp aboard the boat, which had remained safe on its trailer. After a late dinner we were rocked to sleep by a pushy wind on the hull and the whistling in the shrouds.

Dawn broke and we were able to launch, setting off at 8 am and heading north-west: the wind having dropped to 15 knots and blowing in the right direction for a fast sail. The Omani shoreline possesses dramatic beauty – rocky mountains falling sheer into the sea, small creeks ending in strips of white sand, and ripped headlands cutting the horizon. The sea below us was a deep blue, with the only noises being the wind in our ears and the water lapping against the hull. Flying fish caught us by surprise in their fervent flight above the surface. We sailed for six hours, navigating small sheltered inlets for possible anchoring spots, using waypoints with the assistance of our GPS. We even laid out a fishing line with hope of catching an indigenous dinner.

By mid-afternoon we entered a magnificent wide and well-protected cove. At its far end, a superb beach of white sand dotted with wild palm trees drew a postcard such that we expected Robinson Crusoe to appear. The water was translucent, and the air so silent and impressive that the slightest noise of lapping water was repeated by a soothing echo around the surrounding mountains; causing our normal tone of voice to become a mere whisper. The three-metre tidal forecast allowed us to anchor the boat very near the beach, so that she could settle gently on the seabed at low tide.

Going ashore for a mountain hike to take in the flora and fauna was tempting for both of us, and we decided to follow a twisting path that got more inspiring the higher it climbed. Below us blue egrets retook possession of the now unoccupied beach as we contemplated their ballet from the heights, while the boat suddenly appeared so tiny and fragile down in the cove against the enormity of this massive panorama. Our exploration lasted until the evening, when we returned to the shoreline for a campfire and a carefully-executed barbecue on the beach. Having tidied away our human footprint, we finally returned to the now floating MacGregor, to spend the night in an alarming silence. The night was of a deep black, not the slightest light polluting a sky full of twinkling stars that seemed almost close enough to reach. Such sensations are rare, almost disturbing, as we’re no longer used to this type of environmental purity. Not a smell; not the slightest noise: not a single light of human existence. Nature in all its magnificence and splendour reduced us to immobility and awe of its silence.

The next day, following our quiet night, we pursued our coastal investigation before turning about, returning to our ‘ammen’ routines again and getting busy with the responsibilities of modern life. A pod of playful dolphins wished us a roguish farewell; a tortoise crossed our wake without paying us the time of day, and standstill cormorants stared at us from their rocky perches. Loading the boat onto the trailer and heading back to Dubai was like returning from the moon. It was hard to believe that a few hours before we were sailing on a savage planet, visiting places that were probably unchanged for thousands of years, where it seemed nobody had ever before set foot. The MacGregor’s ease of being able to launch from the trailer had made this escape possible, maximising our time in this natural wilderness.
Two Boats in One

I have a dream. It's a recurring dream. Every five years or so I get bitten by a bug-what about powerboat speed in a sailboat I could love? How about doing that 26 miles to Santa Catalina in an hour - in a cruising sailboat? I've chased the dream up Maine rivers on a 19-foot Rowley skiff fitted with cutty cabin, mast, centerboard and a 75-horse Merc. I've followed it to Nantucket to water-ski behind a 37-foot diesel-powered sloop.

I've been cruising my boat for years at five knots, under sail and under power - five knots no matter which way the wind blows or how hard I press on the throttle. What would life be like if that average were 15 knots? or 20? And then the answer came in a call from Offshore: "Go to Marina Bay to try the MacGregor 26X." In a heartbeat.

Conventional wisdom says that a motorsailer is a boat that does neither thing well. MacGregor feels that this is a boat that breaks that mold, that this is both a true sailboat and a true powerboat. The snotty conditions on test day would really tell us.

Ballast When Needed

My heart beat fast as I parked the car. Flags were snapping like assault weapons this October afternoon, and foam was streaking the bay flecked by 18-25 knot puffs from the northwest. Art Rieders of Havencraft in Sudbury, Massachusetts, showed me aboard. He's a
long-time sailor as well as a 28-year MacGregor dealer, and we wondered about whether to brave it, even in relatively protected Dorchester Bay. Then the wind diminished a bit - just enough - and we took the plunge.

I was curious about how this light, near-flat-bottomed boat would handle the brisk crosswind challenging our exit from the slip. Art dropped the centerboard six inches and enjoyed masterful control as he maneuvered her out of the tight basin. Once we were outside, no sails up, the boat heeled 10-15 degrees under the pressure of the wind on the mast alone. Stability was one of my big concerns.

A conventionally keeled sailboat is "self-righting" (ask the Smeetons who were turned turtle off Cape Horn in their heavy 45-footer what "self-righting" really means) due to ballast hung at the bottom of its keel. The MacGregor has no keel. She's a centerboarder.

With her foil-shaped centerboard pivoted down she can sail without making much leeway, but the board weighs just 30 pounds. That hardly makes her "self-righting." Her stability stems from her hull form (relatively hard chines and flat-bottomed mid-sections), and from water ballast.

Water ballast is neat - open the valve and she ingests 1500 pounds of water. It completely fills its tank, can't leak, and won't move. The weight of the water is down low where it works best to counteract the heeling force from the sails. When we opened up the valve the ballast came in and, in eight minutes or so, the tipping under bare poles was no longer happening.

Let out the water and the package you have to pull behind your car becomes 1500 pounds lighter. Run the water out of the boat and you boost the power-to-weight ratio enough to sustain twenty knots with a 50-horse outboard in a boat that sleeps six.

Water ballast can be installed when you need it, and it's free. By adding to her displacement, the MacGregor adds significantly (between 40 and 50 percent) to her stability.

But Can It Sail?

We talked it over and reefed the main before setting sail. Having 50 horses, as opposed to the normal sailboat's pitiful auxiliary, made keeping her into the wind less than the normal hassle. The puffs still had plenty of weight to them. We sailed main-alone for a bit. She
stood up well despite my efforts to dip the rail by driving her off against a tight-trimmed sail.

I could see worry lines around Art’s eyes because this was the kind of weather where you break things. He gave thumbs-up on the jib, though, and with the roll of a drum we doubled our sail area.

I was still experimenting with stability. I moved to leeward, opposite Art. We're about the same size, balanced weights. Then I tried to bury the rail under reefed main and half-rolled jib. I couldn't. The air was a touch lighter; I couldn't summon anything much over 15 knots, but the boat stood much straighter than I'd expected.

You can free the motor from the MacGregor's twin rudders for sailing, but we elected just to shut down and tilt the outboard out of the water. Even with that amount of resistance in the steering system, I found her responsive to the helm as we rounded onto the wind and headed for smoother water under the lee of the UMass Boston campus.

Jamming the boat tight onto the wind didn't work well. She had neither the reserve power nor the weight to maintain momentum through the mid-sized chop at a tight angle to the breeze. Cracking her off an added ten to fifteen degrees was the answer. When I sailed further off the wind she picked up speed and life and seemed to make less leeway. My prescription for getting the most to windward out of her is "foot" off and go fast over a slightly longer distance rather than pinch her close to the eye of the wind.

She had a slight desire to round into the wind, a slight "weather-helm" of the kind that most helmsmen prefer in a boat sailing upwind.

The more she heeled the more she tugged to weather. That's typical, too, and the helm never became excessive.

She presented no problems carrying her way when we tacked, maintaining good momentum and turning through the eye of the wind. Sometimes light boats get stopped by wind and waves before they can complete a tack, but not the 26X. The jib (standard-sized and smaller than the optional genoa) proved a handful to trim in this breeze, though. Every sailboat could use bigger winches!

We ran out of sailing room so reached off toward Boston Harbor with the wind on the beam. I was tempted to shake out the reef, but we weren't sure that the lulls we were getting were permanent. On a
reach the boat lifted and surged with the kind of power that makes sailing a rush. With more sail and less weight, I'm sure that she would start shooting out curtains of spray and showing her planing stuff, but reefed down as we were, we just got glimpses. A quick gybe --- it's easy to control the mainsheet mounted just forward of the wheel on the steering column - and we were running back the way we had come.

The water ballast started to impress me. We had very little of the "death-rolling" that's common in conventional boats when they run before the wind in a seaway. That undulation from windward dip to leeward lean, from leeward lurch to windward wobble comes, at least in part, from the pendulum effect of a heavy weight on a long keel. Centered internal ballast improves on that situation a great deal; our ride seemed almost "on rails."

She's a sailboat. Refinable, tunable, equippable, she can be improved, but she has all the basics and they're arranged to quicken a sailor's heart at her possibilities.

... And Can It Power?

Happy not to have to reconnect the motor to the steering we turned the key, furled the jib, and rounded into the wind to drop the main. Draining the ballast tank can be done at anything over eight knots, but I couldn't resist opening her up.

Bouncing across the still-stiff slop lingering behind the dying breeze she seemed just short of a true plane. Spray over the weather rail was nastier and more persistent than under sail, but otherwise she sat firm and happy as the speed mounted to around 18 knots. Art had remembered to raise the board. "Leave it down at this speed and she can get a bit squirrely." Steering was firm, tracking consistent, even in the cross-chop, and Castle Island was coming at us fast.

I looked at Art questioningly. I saw no worry lines as he nodded, so I put her into a power turn. Not much lean, no skidding... just full power through the full 180 degrees. By now the ballast tank must have been about empty (Art says it takes about six minutes). The bow came down, the spray shot lower, and the speed picked up to 20.7 as we slid onto what felt like a "real" plane with the lift off the bottom doing the work and the engine thrusting straight ahead.

I throttled down to see how long we could stay on plane. From the max (5500) back to around 3500 we kept skipping along, but after that
the bow wave seemed to pile higher and the stern sink deeper as the speed (now about 14) dropped sharply too.

The breeze was dying and Art was anxious to sail again under the full mainsail. A stubby plastic cleat (no winch) on the mainmast and slippery, skinny halyard frustrated my efforts to get full tension when I hoisted the sail. Looking at the scallops and wrinkles along the luff I noted that there are no slugs to hold the sail in place. That means that when you let it down it needs to be wrestled and collected to be kept onboard.

You can't expect a boat that sells, with trailer and sails, for $17,000 to be loaded with gold-plated yachting gear, but there are places on the 26X where the sailing systems are not as elegant as the design, engineering, construction, and potential of the boat as a whole.

Innovations Abound

Her accommodations are attractive. With minimal conversion she can sleep six in a pinch. The dinette not only seats five but is raised so that all have a good view of the outside world. Those deep, dank caves we used to call sailboats can't hold a candle.

The head is enclosed, the galley has a niche for an alcohol stove, the 48-quart cooler is removable so you can pack it at home, and all of the interior cushions and mattresses come up to make down-stairs clean-up as simple as turning on the hose.

Trailering has been made, if not foolproof, at least ridiculously easy. A forward ladder on the custom-built trailer makes it a three-step breeze to get aboard (and why haven't other manufacturers adopted this simple and good idea?). "Goal posts" guide you in on a landing and you drive the stem right to the rubber stopper on the winch post with full engine control. MacGregor pride in being the lowest trailer on the market is justified when you see how that keeps the tow vehicle out of the water and still floats the hull easily with no tongue extension. Mast up (by hand or with the slick custom winching system) and you're set. You can raise and lower the mast underway for fixed bridges or just for kicks.

Light construction cuts both ways. It opens up the boat's sparkling performance, but does it render her seaworthy? It makes her affordable, but it makes you wonder.

Roger MacGregor's best argument - that he knows his materials - is
the more than 36,000 boats he's built. I can look at the quarter-inch bolts closing the hull-deck joint and imagine them zippering through the hull flange under the loads imposed by big water, but there are 36,000 places where he can point and say, "it doesn't happen." I don't expect the 26X to be overly forgiving of sailor error, or to have the massive "strength in reserve" of its heavier counterparts.

How does the boat handle its dual roles? She's a responsive powerboat with good sea manners, but don't expect a canyon runner. With more attention to her sailing systems she could be a fine sailboat. As equipped, this boat has light-duty gear that often cries out for an upgrade (an upgrade that owners can make). Is she set for Cape horn? Is she self-righting? These are questions, but the one I wanted to ask Art was, "How soon can I have one in my driveway?"

Reprinted from "OFFSHORE" Jan 1997, Publisher Richard Royer,

Editor Peter Serratore

The boat was prepared by Havencraft of New England, and had a 50 HP Mercury outboard, and a custom 150 % roller furling genoa. The weather conditions in Boston were as follows: winds about 20-25 mph, clear and 1-2 foot chop, air temp 45 deg. F and water temp 44 deg. F. We had one reef in the main and the jib extended about 110%.
MacGregor 26... Factory website for the MacGregor 26', $22,900 trailerable sailboat, 24 mph, the WORLD'S best selling cruising sailboat.

BOATING NEW ZEALAND EVALUATION OF THE MACGREGOR 26

(PHOTOS ARE NOT INCLUDED TO SAVE DOWNLOADING TIME)

The following article appeared in BOATING NEW ZEALAND, February 2005. It was written by Matt Vance

MOTOR SAILOR ON A TRAILER

The Macgregor 26 is part trailer sailer, part powerboat, offering the benefits of life under sail with the home-by-six convenience of a powerboat. This combination of power and sail is nothing new, but the MacGregor does it in a new way.

Built in the US, the distinctive high profile outline and head turning speed under power have hit a chord with the market. A relatively recent arrival to the New Zealand scene, the MacGregor brand has been producing quality production boats for 36 years from its California base. Sales of the proceeding 26x model exceeded 5,000 and the new 26M is set to be even more successful.

First impressions of the 26M are "large". Her high freeboard, distinctive double layered cabin windows and moulded stake gave her an unmistakable look – this is not your average trailer yacht.

Closer inspection reveals an attention to detail typical of US manufacturers: lots of bright gel coat and moulded curves that flow through the small but functional cockpit and continue through into a clutter-free, flush desk. Though the walk-through transom is narrower than the 26X model, there is still good access to and from the cockpit for trailer and marina use.

Down below, the MacGregor reveals her Tardis-like-qualities. The exceptional spacious layout and generous 1.82m headroom would make comfortable weekend living for a couple or family of four. There is a roomy double birth under the cockpit, a spacious saloon with two large settees/single birth, an ingenious sliding galley and sink unit to port, space for an enclosed head and cozy vee birth forward. This layout seems slightly more
useable than the previous 26X design, to a more user-friendly height.

Rigging and rotating mast is a breeze due to the innovative mast raising winch and pole system. Launching is straight forward, aides by relatively flat bottom, although high freeboard could make this challenging in anything other than an off shore breeze. The 26M is legal width and light enough- thanks to the water ballast – to be towed by a two litre car. She rides nicely on her well-balanced trailer, which comes with hydraulic override brakes as standard.

We motored out into the Littleton harbour in powerboat mode, without water ballast, and experienced the first of many unusual sensations as we lifted onto the plane and clipped along at 17 knots.

With a 50hp Yamaha four-stroke slung from a powerboat-like transom well, we had the power to push through a little wind-against-tide chop. With the skipper and crew seated aft in the cockpit, the motion is much smoother than most powerboats, however the rig seems to take a lot of shock load from the pounding, which can alarm the uninitiated. Ideally, this mode is suited to water skiing on calm days.

A simple, hand-operated gate valve on the transom allows filling of the water ballast tank. In three minutes it’s full and the motion of the 26M changes dramatically to that of a displacement launch. In this mode she has a maximum speed under motor of around 15 knots. While this gives a slightly wetter ride, the sensation is a lot more solid and getting home quickly in front of a weather change is a reassuring possibility.

The Yamaha 50hp four-stroke is quite economical. There is storage for up to 60 litres of fuel in the cockpit lockers, which are isolated from the interior of the boat. The 26M’s maneuverability and shallow draft in power mode makes beaching easy, which was disturbing for the keeler sailor in me, but it will make the family beach picnic, that much more enjoyable.

Switching to sail mode is a matter of raising sails and lowering the water filled dagger board and the twin rudders, which slot nicely into the transom on an endless rope system.

The rudders are attached to the same cable steering system as the motor. This and the small powerboat-type wheel make for an awkward feel to the helm by yacht standards. Disconnecting the motor from the system may make a difference-this simply done by lifting the helmsman’s hinged seat,
stepping into the engine well and disconnecting it with an R clip. However it is recommended that it left connected so the engine is ready to use if needed in a hurry.

With a 16-knot breeze in the offing, we set the 19.1 m² genoa and 15.1 m² mainsail. We quickly reefed the genoa on the CDI to balance the boat and to help her stay on her feet. The 26M’s narrow beam and lack of ballast in the dagger board mean that she is tender and needs reefing early to sail at her best. Future 26M’s will come with the working jib as standard option and the genoa as extra, which is in keeping with New Zealand’s generally windier conditions. We tacked through about 90 degrees in the short harbour chop and with a boat speed of around 5 knots on the wind, which is appropriate performance for a cruising trailer sailer.

While the purist sailor might enjoy a good slog to windward in these conditions, the smart family sailor would learn to use the 26M’s strengths. It’s appealing to think of dropping the sails to motor upwind at pace to a nice anchorage for a BBQ or water ski, while looking forward to a leisurely downwind home a 5-6 knots.

The designers have achieved a good compromise between power and sail. Some trade-offs are inevitable but the overall result is a comfortable family boat in the best traditions of the 70’s trailer sailer revolution, updated by technology and in sync with the needs of the modern family sailor.

SPECIFICATIONS

loa 25ft 10in
lwl 23ft 2in
Beam 7 ft 9in
Draft, board up 12in
Draft, board down 5ft 9in
Engine 5-50 hp
Water ballast 533 kg
Permanent ballast 136 kg

Total ballast 669 kg

Disp, empty 1264 kg

Price, basic yacht and trailer, no engine $58,000 +gst
The following article appeared in Nor'westing Magazine, March 15, 2006.

AT THE RAMP ----THE MARVEL THAT IS A MACGREGOR

Those of us rapidly becoming so "long in the tooth" that we could double as vampires shall clearly remember the opening lines of a popular TV series from the 1950s and 1960s. Look! Up in the sky! It’s a bird! It’s a plane!” Of course the mysterious object was neither bird nor plane, but something much more marvelous and unique; "No, it’s Superman!"

Those opening lines, etched so indelibly on the childhood memories of an entire generation, come to mind when considering this month’s vessel for our "At The Ramp" feature, the MacGregor 26. When spotted on plane at over 20 mph and rigged with a mast, it would only seem natural for certain observers to have difficulty attempting to categorize the craft.

"Look! Out on the bay! It’s a powerboat! It’s a sailboat! And of course the mystery boat is neither a conventional powerboat nor a high-performance sailboat, but something marvelous and unique in it’s own right. "It’s a MacGregor!"

Every four hours, every day of the year, somebody buys a new MacGregor. While there are several "trailer sailors" offered by various competitors and MacGregor also builds larger sailboats (up to 70 feet LOA), MacGregor Yachts has taken the design of the 26 well outside the traditional "power vs. sail" paradigm and created a boat that can perform with astonishing versatility. The name MacGregor and the concept of trailerable...
sailing are nearly synonymous.

Powerboat purists may consider the MacGregor and conclude, "There are several powerboats that come to mind that will go faster or handle slightly more nimbly than a MacGregor." Sailing elitists could properly observe, "There are some sailboats of the same and similar size that will out sail a MacGregor." While there is some merit to either reproof, such critics may be missing the point entirely. MacGregors sell in exceptionally large numbers to boating families who want to enjoy the ability to motor along at planning speeds or slow down and sail silently through the San Juan or Gulf islands. The MacGregor is one of the few boats that could allow some boating families to spend four to five days of a week’s vacation actually sailing in the islands (rather than a short one-to two-day sail between two-to three day motor cruises up and back). MacGregor may not be the most precise handling powerboat ever built, but it certainly sails better than 99.9 percent of its competitors. MacGregor may not be the ultimate high-tech 26-sailboat, but

it can two to three times faster than most when in the motorized mode.

CONSTRUCTION AND DESIGN

MacGregors are built on solid, hand-laminated fiberglass hulls. There is no "chop" used in the lay up, which allows the Macgregor to be lighter and more easily trailered than a chop strand lay up of equal size. MacGregor avoids the use of balsa or foam coring in their fiberglass lay up but does include a generous amount of solid foam floatation to keep the vessel afloat should it ever become swamped.

The hull and deck joint is mechanically fastened as well as chemically bonded, using 3/16" bolts on 4" centers. Deck hardware is through-bolted with backing plates and washers for increased strength, and all of the through bolts nuts are accessible from the interior but cleverly concealed behind removable access panels.

The MacGregor is shaped like a traditional sailboat above the waterline, but the bottom is flatter than most sailboats and designed to allow the boat to plane with adequate hp in the powerboat mode. A retractable dagger board and retractable dual rudders provide the required stability and steerage when sailing, but are unneeded and easily withdrawn when the MacGregor is used as a high-speed powerboat. The retractable dagger board allows the MacGregor to sit low on the trailer and enables the boat to float free on the
trailer in shallower waters and a greater number of boat ramps.

Sailors will appreciate the rotating mast of the MacGregor 26. Sailboats with conventional masts will experience points of sail where the mast creates a pocket of turbulent air over the forward portion of the mainsail and reduces the lift accordingly. MacGregor’s rotating mast will present a more aerodynamic face to the wind and provide additional buoyancy and assist in righting the MacGregor in the event of a knockdown under sail. Ease of raising and lowering the mast will be important to any trailer sailors, and MacGregor has incorporated a system that allows the mast to go up or down in a matter of minutes.

Ballast is the most important when sailing, but can be less desirable when power boating and adds additional weight when towing. MacGregor uses 300 pounds of permanent ballast, and incorporates a water ballast system that adds up to 1,150 pounds of additional weight to the hull when needed. The MacGregor stability is enhanced by 1,450 pounds of ballast, but the tow vehicle is only required to haul 300 down the highway. The water ballast system can be filled underway, and is self-draining when the MacGregor is converted to powerboat mode.

Powerboats will be pleased to note that the MacGregors is rated for motors up to 70 hp. According to MacGregor Yachts, the 26-footer will turn about 22 mph (or 19 knots) with only a 50-hp engine. Nineteen knots is just fast enough to tow one adult on a waterski, a feat that is absolutely unlikely to be performed by any other boat capable of sailing. (Boaters looking primarily for a water ski or a wakeboard boat and with no interest would probably select something other than a MacGregor.) With a smaller motor or throttled back, the MacGregor can loaf along at casual "trawler speeds" and enjoy excellent fuel economy.

INTERIOR DESIGN AND AMENITIES

MacGregor provides a pleasantly upholstered interior, with headroom of up to six feet below decks. A double row of cabin windows introduces plenty of natural light to preclude and "down in the cave" sensations associated with some sailboat cabins. A useful sliding galley module is located on the port side of the cabin and will lock into the forward, middle, and the aft position. By shifting the galley between the aft cabin berths and the salon, more space can be provided with appropriate for changing activities throughout a boating day. The galley consists of a stove and sink, with cold storage provided by an ice chest that nestles into a dedicated compartment.
under the rear bunk.

With the starboard dinette table down and the starboard cushions converted to a berth, and at least two in the port and starboard berths, a large family could easily bunk down for a weekend or longer.

The head compartment is fully enclosed, providing some welcome privacy that is simply not available on many boats of similar size. A portable toilet is standard on the MacGregor 26, but a fully plumbed, conventional marine toilet with through-hull and holding tank is an available option. A folding door can isolate the forward compartment from the main cabin, allowing more privacy once again.

CONCLUSION

The MacGregor 26 remains a popular and appropriate choice for boaters anxious to enjoy a single vessel that can be a very good sailboat as well as a very good powerboat. Enthusiastic MacGregor owners probably wonder why other boaters would ever settle for a boat that is "only" a powerboat or "only" a sailboat. MacGregor owners are so busy having fun that they probably never really fret that their own vessel will never contend for the "ultimate" status in either the sail or power category, especially as their boats continue to serve them reliably and well without regard to the type of boating they choose to enjoy on any particular day.

A relatively low purchase price and reduced monthly costs that can be associated with trailer boating (compared to keeping a boat in the slip) allow a greater number of people to get out on the water in a MacGregor. That’s a very good thing for the families that are cruising in MacGregors, as well as for boating in general.

In the Pacific Northwest, MacGregors are represented by Blue Water Yachts at 2400 Westlake Avenue in Seattle (206-282-4261) and by Gerry Berg Holdings in Vancouver (800-334-6269). Blue Water Yachts offers the MacGregor 26 packaged with a trailer 50-hp outboard starting at just under $30,000.
It’s often noted that every boat is a study in compromise. We express individual preferences for design choices balancing speed and fuel economy. Boaters consider trade-offs between larger enclosed cabins and maximum exterior deck space. We wrestle with the benefits of fly bridge visibility at the cost of longer rolling moments and windage. Shall we power with gas engines (cheaper to buy) or diesel (cheaper to operate)? There is no universally correct choice, so the wide varieties of boats we own and enjoy reflect a healthy diversity of taste and opinion.

One of the first decisions most boaters will face is the fundamental choice between power and sail. Nearly every other aspect of marine design is commonly compromised, but the vast majority of builders turn out a product that is clearly definable as either a sailboat or a powerboat. Few manufactures endeavor to combine the best aspects of a speedy, planning, outboard hull and a nimble, fun to sail, cruising sloop.

The MacGregor Yacht Corporation (represented in the Pacific Northwest by Bluewater Yachts on Seattle’s Lake Union) not only attempts the unlikely marriage of power and sail, but also has invented a highly successful niche category of high-speed trailer sailors in the process.

Todd and Cheryl McChesney own Blue Water Yachts, the largest trailerable sailboat dealership in North America. Cheryl took us for a test sail on a new 2005 MacGregor 26. We quickly realized that while the MacGregor 26 is not the ultimate powerboat or an ultra fine-tuned racing sailboat, it is a uniquely enjoyable and surprisingly affordable vessel that offers a wide spectrum of choices for cruising our
Northwest waters. As Todd observed, “No boat will ever be all things to all people, but the MacGregor has proven to offer enough things, to enough people, that we have a lot of very happy and satisfied owners.”

ABOUT MACGREGOR

MacGREGOR yachts began building boats in the early 1960’s. The company business model was conceived by a group of graduate students at the Stanford School of Business. MacGregor invented an adaptation of the retracting keel and energized the trailerable sailboat market. Sailboats with fixed keels can be more difficult to tow and nearly impossible to launch at most boat ramps (the protruding keel puts the hull in the air that the tow vehicle could easily be submerged before the boat found enough depth to float free of the trailer). With a retractable keel, a trailerable sailboat sits low on the trailer and launches as easily as a small runabout.

When MacGregor first begun building trailerable boats, families commonly owner a rear-wheeled drive, body on frame, V8 automobile with substantial towing abilities. As car shifted to front wheel drive and lower horsepower engines, MacGregor recognized a need to reduce the weight of their vessels to facilitate safe towing. The innovative solution was MacGregor’s water ballast system. The weight can be literally drained away when running in powerboat mode, making it easier to haul the MacGregor onto a trailer.

Elimination the static ballast allowed MacGregor to improve the performance of the 26 when operated as a powerboat. One of the company’s promotional brochures includes a photo of an adult water-skier being towed by a 26 MacGregor. It is unusual, to say the least, to see a water-skier zipping along behind a boat equipped with a mast. (With a 50-hp outboard, the MacGregor 26 will turn about 22 mph.) Few people seeking a boat to be used primarily for water-skiing would chose a MacGregor, just as extremely serious sailor might prefer a more specialized and highly evolved sailing hull. MacGregors appeal to boaters who hope to enjoy the fun of sailing and the distance-shrinking cruising ability of a powerboat in a single vessel.

MacGregor can legitimately claim to be one of the larger volume manufacturers, having launched in excess of 35,000 boats.
The 2005 MacGregor 26 is constructed of hand-laminated fiberglass, without the use of chop strand or “coring.” The dry weight of the empty boat is 2,550 pounds, and the beam is 7’9” to permit easy trailering. (The trailer weighs another 710 pounds). The general style above the waterline is reminiscent of a small sloop, but there is a broad, flat transom with an engine well that accommodates up to 70-hp outboard motors. With the daggerboard and rudders in the “up” positions, the MacGregor is a planning hull, with a mere 12-inch draft. The cockpit will easily seat four to six, with a pedestal-mounted steering wheel and engine controls. Side decks are nonexistent, with access between the foredeck and the cockpit routed across the cabin top. Fortunately, Blue Water Yachts rigs their boats for easy single-handed sailing from the cockpit. The roller-furled jib also reduces the need to go forward when underway.

The MacGregor 26 interior provides all the basic amenities of a family cruiser. An extremely roomy double berth is most aft, under the cockpit. Just forward, to starboard, is a dinette that will seat four. MacGregor incorporates a unique “sliding galley” mounted to port. The galley locks into three different positions. When slid forward, it is opposite the dinette and there is well over six feet of standing headroom available for the cook. In the middle position, the alcohol stove and sink can be used with ease, and the additional seating space is created on the port side of the main cabin. With the galley secured most aft, it is entirely under the cockpit but there is still plenty of room to sleep in the aft birth, and sliding the galley all the way aft creates an additional single bunk on the port side of the main cabin. Two can sleep in the forepeak, and the dinette folds down into a single berth over seven feet long. One could sleep six adults on a MacGregor 26, but frankly the boat would seem more appropriately accommodating for two to three adults, or a young couple with perhaps two or three kids.

Many smaller boats have no toilet facilities, or a “porta-pottie” arrangement that stows under a bunk when not being used. Privacy on many small boats is non-existent. The MacGregor 26 has an enclosed head compartment with a mirrored bulkhead, so dignity can be preserved without asking everyone aboard to “look elsewhere.” Blue Water Yachts includes a portable marine toilet with a holding tank that can be fitted if desired.

GETTING UNDERWAY

We didn’t need to launch the MacGregor 26; it was secured to a dock at the Blue Water Yachts office. Launching a MacGregor is reported to be an easy task, with the aluminum mast easily raised or lowered.
by a single person. (There is an optional mechanical device that uses a brake winch and support pole to more precisely control the mast while raising or lowering.) The forestay is the only rigging disconnected when the mast is lowered, so setting the mast up again is a simple procedure. Launching would involve only a minimum of fussing around, once floated free from the trailer.

To exit the dock, we lowered the daggerboard and the twin trailing rudders. Cheryl put the MacGregor into the fairway, spun it around smartly on the daggerboard pivot point, and we motored out to Lake Union. The outboard ran flawlessly. The MacGregor’s “sailboat genes” allowed it to be very agile in tight quarters.

SAIL HO!

Once out on the lake Cheryl showed us how easily the MacGregor converts from a powerboat to a sailboat. The first order of business was to confirm that there was water in the ballast tank. Removing a cap from a fitting under the V-birth allowed water to displace the air in the system, and we confirmed the tank was full by sighting water within a half-inch of the vent fitting.

For purposes of our demonstration we would be doing a “low tech” sail (there’s a limit to what a stinkpotter can be expected to absorb.) We centered the boom over the companionway dodger

After removing the sail cover and the bungee cords bundling the mainsail against the boom, Cheryl motored into the wind and raised the outboard, releasing it from hydraulic steering ram and securing it on an adjacent post. Disconnecting the motor reduced the load on the steering wheel to just the two rudders trailing off of the stern (We were surprised to learn that the extra point for securing the outboard was a Blue Water Yachts innovation, and Todd and Cheryl sell the parts for this system to MacGregor dealers and owners throughout North America.)

We hoisted the 170-square foot mainsail and began scooting across the lake. We made very good progress up wind. Cheryl commented that many sailors are surprised at how well the MacGregor 26 goes to windward. There is a powerful, soothing silence when under sail—an experience that can’t be exactly duplicated in a powerboat of any type. Sailing is a natural, organic experience, with Nature herself carrying you toward your destination. Every time I go sailing, I resolve to do it more often.
We unfurled the jib and turned to take the wind board abeam. It’s a good thing the seven-knot speed limit on Lake Union doesn’t apply to sailboats—we were flying! The planning characteristics of the MacGregor hull free the vessel from the constraining bow wave that decrees a 26-foot displacement hull-sailboat normally sailed seven knots. With a moderate wind on Lake Union, we were clipping along faster than one would expect; factory sales literature claims that with enough wind a MacGregor can achieve 13-14 knots under sail.

We heeled over on the beam reach, but the water ballast proved to be effective. Sitting on the high side of the cockpit and watching the chop bouncing off the hull is a real sailing experience—as it should be, since the MacGregor is a real sailboat.

Cheryl called our attention to the MacGregor’s rotating mast. The mast is shaped like an airfoil and automatically seeks the proper angle relative to the wind direction. (The shrouds and spreader remain fixed.) A non-rotating mast can deflect the wind and create a “dead spot” in the head of the sail.

The rotating mast all but eliminates the deflection of air away from the sail, and the wind fills the sail more efficiently. The rotating mast, the shallow draft, and the relatively lightweight all contribute to a surprisingly speedy experience under sail.

POWERING UP

Sailing the MacGregor was such fun we could have spent all day just blowing up and down the lake. Alas, time limitations eventually dictated that we douse the mainsail, furl the jib, and experience the MacGregor in powerboat mode.

We hauled up the daggerboard, lowered the outboard, and reconnected it to the steering ram, and hauled up the trailing rudders. Our top speed would be slightly reduced because we still had the water ballast in the tanks (the tanks can be drained in about five minutes when underway). We headed up for the “speed lane” and throttled up.

The MacGregor 26 stepped up the plane very quickly, easily reaching about 20 knots with minimal wake. Aside from the empty mast protruding from the cabin top, there is little difference between running the MacGregor at the moderate speed as opposed to any one of a number of traditional runabouts. Most trailerable sailboats will motor at five or six knots, or about a quarter of the speed of a
MacGregor. Fuel consumption is said to be around three gallons per hour when cruising at 15 knots, achieving an impressive five nautical miles per gallon. Make no mistake about it; the MacGregor is a real powerboat, too.

CONCLUSION

As Todd McClesney stated, no boat can be all things to all people. There are certainly higher performing, more technical sailboats (and more exciting, speedier powerboats) than a MacGregor 26. What does singulary well in combine the potential for a very wide range of fun boating experiences into a single vessel. It would seem too obvious that a boat that can sail well and then slip easily into planning powerboat mode will appeal to a greater number of family members and could enhance the family’s total boating enjoyment.

I have often wondered what happened to the affordable family boat. It’s all too easy to attend a boat show and conclude that unless one is prepared to invest $80,000-$100,000, or substantially more, it may be tough to go home with a new boat on which a family of four would consider spending a week in the San Juans. The affordable family boat is alive and well, and available at Blue Water Yachts. Todd and Cheryl employ a “no dicker” pricing and offer the same low price to all comers. The Blue Water Yachts “bare boats” package includes the bare essentials (but no out board), the prices out at $20,999.

There are packages that include a 50-70-hp Nissan and Suzuki outboards, dual battery systems, marine coolers, canvas covers, and much, much more. The extremely well equipped boat we tested at Blue Water Yachts was configured with the “Super Cruising Package”; more than adequately prepared to depart on a summer vacation cruise at a moment’s notice. The MacGregor 26 with this top-of-the line option group is still modestly priced at $30,999.

Affordable family boats are good news for the marine industry, as well as for the families that are enjoying them. Cheryl McChesney expressed it very succinctly: “I really enjoy selling MacGregors, they make people happy!”

One could do far worse than own a boat specializing in happiness.
Note: The following article applies to the 26X, recently replaced by the 26M. However, the boats are very similar, and many of the comments relating to the X will be applicable to the M. We will post new reviews and comments on the boat as they are received.

This is a copy of the September, 1997 Cruising Helmsman Magazine article reviewing the MacGregor 26. Cruising Helmsman is one of the top Australian sailing publications.

The boat was provided by our Australian Dealer, Synergy Yachts.

(Photos are not included to save downloading time)

A NEW MACGREGOR HYBRID

In the late 1980's the MacGregor Yacht Corporation brought out a 26ft trailable which made interesting use of water ballast. The yacht eventually made its way to Australia, where there was some interest. In American however, the design underwent several modifications and now it has turned up in Australia once again. This time it may well open up a whole new market.

The latest version of the heavily modified trailable still carries its innovative use of water ballast, but it has an even more radical slant to it; it has been designed to become a high speed power cruiser as well.

For those who get tired of sitting around in no wind, this may prove the ultimate "getaway" boat. When the winds are light (as they were during my winter's day sail) you can leave the water ballast out and sail a lightened version of the MacGregor which moves surprisingly well in a small amount of breeze.

When the winds pick up it's a simple task to "pull the plug" and fill...
the specially built tanks with water, drop the swing keel a little further and get a stable, fast sailing performance. And when the wind dies completely (as it did during part of our test sail) you simply start the 50hp Tohatsu, open the water ballast tank plug, and take off for a quick ride back to the boat ramp. You can even ski behind it, if you have to keep the kids amused (though performance depends on the total crew weight aboard at the time).

The 26 is being handled in Australia by Synergy Yachts and proprietor Phil King says the response to the yacht in the US has been so overwhelming that the Los Angeles based company has decided to focus all their production on the boat, dropping off production of their 65 and 16 footers. "It's become the largest selling production trailer-sailer in the world," says King, "They've built 1,650."

To accommodate its twin uses the MacGregor 26 has an unusual shape, with rather boxy section shapes and fairly straight slab sides. There is a specific design concept behind this look, however. The flat bottom has been developed to promote easy planing when under power, and the high, straight sides help maximise interior space and headroom while at the same time keeping the beam suitable for a towed boat. A moulded stepped chine halfway down the side helps stiffen the hull as well as providing a wash deflector when powering at high speeds. The hull moulding is solid fibreglass and the deck has a balsa core to stiffen it, whilst the hull and deck mouldings are bolted together and sealed. When stationed on its trailer the boat has a stainless post which supports the mast aft. This is used in the relatively straightforward mast raising procedure.

A short lever arm is attached to the mast base and a block and tackle system runs from the lever top to the bow. Using this, one crew member can run the tackle line back to a deck winch and simply wind the mast into an upright position. It's accomplished in a couple of minutes.

The interior is simply and efficiently laid out. The water ballast tank (complete with built-in baffles to stem the "sloshing" effect) is incorporated into the lowest level of the hull and the swing centreboard sits snugly in its case without intruding as many vertically raised daggerboards do. Only nine inches of water is required to float the MacGregor, and it can be beached easily. There is a valve for the ballast tanks located under the companionway step, along with an air inlet so that air can fill the void created by water which drains out through a transom plug, or escape as it is filled. As a safety feature the MacGregor also has built-in positive buoyancy.
The boat will float, gunnel to the water level, even if it is swamped.

Up forward there are two berths with three storage bins underneath. There are no bulkheads, so the feeling of space is accentuated. Immediately aft of the forward berths are the saloon table (with two person bench seats fore and aft, and an ice chest under the after bench) and a small two person settee running fore and aft along the port side of the hull. The saloon table drops down and in combination with its bench seats either side forms a double berth. A location for a holding tank is under the ice box, though the fitting of a tank is an option only. A stainless mast compression post runs under the mast base.

A simple moulded sink (a hand pump cold water tap) with storage underneath is aft of the port side settee, and in this area of the cabin headroom is available for a person of moderate height.

Behind the saloon area to starboard is a fully enclosed head, unusual in a craft of this size. Whilst there is no shower facility, it does have a small sink with cold water hand pump fitted. (Water capacity is approximately 15 gallons (US) in two plastic inflatable tanks. Fuel is retained in two nine gallon tanks stored under the cockpit seating.)

Immediately behind the sink and storage area to port is another small seat (making room for seven people to sit in the cabin) and under the cockpit area is a massive double berth. There's plenty of room below decks for a relatively small craft, and a neat moulded headliner with stiffening helps add strength to the overall structure.

On deck the layout is unusual as well. Because the whole boat is based on the idea that it can be easily motored as well as sailed, the hull shape and cockpit design show influences from the power boat area. Up forward there is a simple synthetic bow roller and a compact anchor locker which can hold a surprisingly large amount of line. There are no side decks and stanchions run from the bow, up over the sleek coach house line back to a spacious cockpit. There are two sets of headsail tracks, one for the genoa (which we carried) running along the cockpit coaming and another pair set on coachhouse roof, which are shorter and used for the jib. Single Lewmar Six winches are located either side of the companionway hatch, which is extremely large. The cockpit would hold seven in comfort and is fitted with weatherproof cushions. The central steering console is the point at which the mainsheet attaches and the 4 to 1 system has a cleat attached.
The small steering wheel drives the boat easily and is quite responsive, both under sail and power. Engine controls (revs, tilt and throttle) are all attached to the steering console.

Behind the console is a seat for the helmsperson which hinges upwards to allow access to the broad transom. There is a boarding platform and a substantial bracket to support the 50hp Tohatsu outboard (which comes with the powersailer version of the boat). There is a 9hp outboard supplied with the standard boat.

The sailing rig is basic, but effective. A fractional set up is supported by a single set of swept back spreaders (round, heavy-walled tube) and one set of lowers. A vang and the mainsheet are the only sail controls. The standard inventory is a hanked jib and mainsail, both in Dacron. The larger headsail we used is optional, as is an asymmetric spinnaker.

Lines from the mast run aft to banks of jammers. To starboard (from the outside in) run the kit halyard, jib halyard, main halyard, and the centreboard control (which need very little movement to raise or lower it). To port there is an outhaul control line and a reefing line.

The conditions we sailed in proved to be quite testing, mainly because of the lack of wind. Though it took less than half an hour to get the boat into the water (a low profile trailer which helps make launching easy comes as part of the package) it was just enough time to see the last of a morning breeze fade to nothing.

Ordinarily this would have spelt the end of a yacht test, but with this craft it gave us chance to see how it performed under power. We sprinted out under the Captain Cook at George's River, but to no avail. At least it didn't take long to find out there was no wind there either.

Given the light conditions when we launched the ballast tank had been left empty (another advantage of this system) and the boat found the just faintest airs enough to get going. Waiting proved a virtue and eventually a light breeze built from the northeast, coming in at around five knots. I was surprised to find how responsive the boat was in its yachting configuration. It tacked smoothly and quickly and (given the fairly wide sheeting angle for the large headsail) picked up apparent air to point reasonably closely to the wind.

Gybing presented no difficulties and despite the lack of pressure the boat performed nicely. Finally, after as much sailing as the
conditions allowed, we decided to head back to the launching ramp and I got the chance to try this unique hybrid craft under power. I'm no power boat expert, but this boat has a tremendous turn of speed when the throttle goes down. Great sheets of spray were thrown out as we tore along at around 20 knots. It was a weird but engaging sensation for a sailing boat. Under this much power the boat was easily manageable (though the rudders are lifted and steering is supplied through the outboard). The relatively hard chines dig in and turn the boat through a tight loop when required.

It certainly beats hanging around waiting for the wind to come back! Whilst the fitout reflects the way this boat is used for the generally lighter breezes of Southern California, it is also exceedingly well appointed and offers good value. As a trailer sailer for coastal day sailing or overnights it seems an excellent option. The shallow draft will allow easy access to the beach and the relatively high powered motors means explorers never have to worry about running out of wind. The way this nicely finished boat is selling in the States suggests there may be a potentially large market available and with its official launch about to take place at the Sydney Boatshow (at the time of writing) it will be interesting to see if Australian buyers warm to it as well. The MacGregor 26 is an interesting and unusual concept and it may well have found a new market in the crowded boating scene.
The interior decor of the yacht is striking. We have chosen to reflect the modern interiors of the best custom jetliners and exotic European power boats, rather than the traditional, heavily wooded or rough fiberglass interiors of conventional sailboats. Luxurious carpeting is used throughout the boat, and high quality fabrics are used on walls, bulkheads and ceilings to quiet the boat and soften the decor.
MAIN SALON: This is a large, comfortable area for dining and entertaining. It also serves as a sleeping compartment for 2. There are a pair of hanging lockers and flat screen TV and VCR. Opening side windows and a deck hatch provide this area with a lot of light and ventilation.

This is the main salon, viewed from the forward end.

INSIDE STEERING STATION: An unusual feature of the interior is an inside navigation and steering station. It has excellent visibility, a chart table with storage, and a comfortable, forward facing sofa type helmsman's seat for
three. All electronics, including a full Brookes and Gatehouse navigation and autopilot system, Furuno radar and chart plotter, and a second set of autopilot helm controls are be mounted within easy reach. The autopilot then serves as a backup steering system. We see no need for the helmsman and friends to have to be exposed to cold or rainy weather conditions. With the quiet engine or under sail, it is really nice to sit inside in complete comfort. Another major advantage of this navigation-steering station is that the navigator or skipper can see what is going on outside the yacht. This is much better than navigating blind from the depths of the boat. This area can also serve as an informal dinette with a great view.

Here is another view of the navigation station from the main salon.

GALLEY: The galley countertop is a full 8' long, with a deep double sink. There is a 4 burner CNG stove and oven, and a huge amount of locker and drawer space. It is located in the raised area of the cabin, near the inside navigation station. Most large yachts have the galley tucked away deep in the interior, where ventilation and visibility is poor, and where the cook is totally isolated. A great deal of time is spent in and around the galley, cooking, making coffee and looking for cookies. When the skipper ducks below for making coffee, he can still see out to watch were the boat is going.
We have placed the galley where it has a great view in all directions and lots of fresh air. Its location also gives easy access to the dinette, cockpit and navigation station. The icebox, located under the navigation station, has 9.3 cubic feet capacity, one of the largest that you will find in any comparable boat. It is extremely easy to reach from the galley. A combination alternating current or engine driven refrigeration/freezer system can be added.

Visible at the far end are the entry steps, which are really steps and not the usual near-vertical ladder. The step cabinet houses a convenient trash container or storage area. There is a storage locker under every seat and berth throughout the boat.
MASTER STATEROOM: This area offers a queen-sized bed, sofa, a large double hanging locker, under berth storage, drawers, vanity and a place for a TV set. The master and forward staterooms, both equally large and comfortable, have their own private bathrooms with showers.

There is a watertight bulkhead directly behind this stateroom. (there is another watertight bulkhead forward of the stern)

FORWARD STATEROOM: This area has a very large V berth, 2 seats, a sofa, a double hanging locker and private head. A large opening hatch is located directly over the V berth. There is room for a washer-dryer.

The watertight bulkhead can be seen at the forward end of the V berth. Ahead of this bulkhead is a large anchor locker that will hold an amazing amount of equipment.
This is the sleeping compartment directly behind the forward V berth.

This is the large hanging locker across from the berth shown in the above picture.
Here are 2 views of the head off of the master stateroom. It can be accessed directly from the navigation station area or from the master stateroom.

This is the head for the forward stateroom.

Behind the cockpit and the aft watertight bulkhead, there is a third, completely private sleeping area. This is a perfect area for a charter crew, or for the kids. This area also makes a great workroom or garage for storing all of
the stuff that you may not want in the main cabin (rafts, oars, fenders, sail covers, etc.) There is also room for a diesel AC 50 or 60 hertz generator to power appliances and air conditioning.

There is another very large area near the transom, with a large hatch, for storage.
MacGregor 70... Factory web site

MACGREGOR 70 "ANTHEM"

EXTerior
COCKPIT: Modern sailboat designers have forgotten that the crew, skipper and guests need somewhere comfortable to sit. Many cockpits have degenerated to the point where they are nothing more than footwells surrounded by flat decks, totally unlike the deep, comfortable cockpits of the past. Anthem's cockpit is deep and luxurious, with seats and backrests that really fit the passengers. Cockpit seat cushions are very thick, soft and comfortable.

Many of the new cruising boats have their cockpits located amidship, right in the path of large doses of spray when the boat is sailing to weather. Anthem has its cockpit near the stern, where spray is minimized, and where the helmsman can keep an eye on the entire rig and boat without putting a crick in his neck. The cockpit seats are high enough that you can easily see over the cabin top, and long enough to sleep on. With a bimini in place, this is a really great spot.

There is also a removable bimini sunshade that covers most of the cockpit.
The foredeck features a large hatch for sail handling and ventilation.

Anthem as a pair of large Fortress anchors, each with 70' of chain and 350' of nylon 5/8" line, and a powerful Muir electric windlass.
The rear deck is large and flat, perfect for storing a large dinghy. There is a large storage area below this deck.

Boarding steps are a major convenience.
DRAWINGS WILL BE AVAILABLE AT THE BEGINNING OF FEBRUARY
SAILING PERFORMANCE

<table>
<thead>
<tr>
<th>LENGTH OVERALL</th>
<th>70'</th>
</tr>
</thead>
</table>

POWER, WATERSKI

<table>
<thead>
<tr>
<th>WATERLINE LENGTH</th>
<th>67'</th>
</tr>
</thead>
</table>

SPINNAKER

<table>
<thead>
<tr>
<th>BEAM</th>
<th>12' 0"</th>
</tr>
</thead>
</table>

SAFETY

<table>
<thead>
<tr>
<th>DRAFT</th>
<th>8’ 6”</th>
</tr>
</thead>
</table>

EASY TO SAIL

<table>
<thead>
<tr>
<th>DISPLACEMENT, DRY</th>
<th>32,000 LBS</th>
</tr>
</thead>
</table>

HOW TO SAIL

<table>
<thead>
<tr>
<th>BALLAST, LEAD</th>
<th>11,000 LBS</th>
</tr>
</thead>
</table>

WHY THE LOW PRICE

<table>
<thead>
<tr>
<th>FUEL CAPACITY</th>
<th>250 GALLONS</th>
</tr>
</thead>
</table>

COST TO OWN

<table>
<thead>
<tr>
<th>WATER CAPACITY</th>
<th>225 GALLONS</th>
</tr>
</thead>
</table>

COMPARE 26X

<table>
<thead>
<tr>
<th>ICE CHEST CAPACITY</th>
<th>9.3 CUBIC FT</th>
</tr>
</thead>
</table>

COMPARE HUNTER EDGE

<table>
<thead>
<tr>
<th>DIESEL ENGINE</th>
<th>250 HP</th>
</tr>
</thead>
</table>

COMPANY HISTORY

<table>
<thead>
<tr>
<th>SPEED UNDER POWER</th>
<th>11 KNOTS</th>
</tr>
</thead>
</table>

HALL OF FAME AWARD

<table>
<thead>
<tr>
<th>BERTHS</th>
<th>10</th>
</tr>
</thead>
</table>

WHY BUY A SAILBOAT

<table>
<thead>
<tr>
<th>STATEROOMS</th>
<th>3</th>
</tr>
</thead>
</table>

MAGAZINE REVIEWS

<table>
<thead>
<tr>
<th>HEADS</th>
<th>2</th>
</tr>
</thead>
</table>

SUPPLIERS' CORNER

<table>
<thead>
<tr>
<th>MAINSAIL</th>
<th>740</th>
</tr>
</thead>
</table>

SHIPPING

<table>
<thead>
<tr>
<th>MIZZEN</th>
<th>345 SQ. FT.</th>
</tr>
</thead>
</table>

EXPORTING

<table>
<thead>
<tr>
<th>WORKING JIB, 85%</th>
<th>SQ. FT.</th>
</tr>
</thead>
</table>

FACTORY GARAGE SALE

<table>
<thead>
<tr>
<th>MIZZEN STAYSAIL</th>
<th>334 SQ. FT.</th>
</tr>
</thead>
</table>

MACGREGOR 65

<table>
<thead>
<tr>
<th>GENOA, 130%</th>
<th>SQ. FT.</th>
</tr>
</thead>
</table>

MACGREGOR 70 ANTHEM

<table>
<thead>
<tr>
<th>SPINNAKER</th>
<th>SQ. FT.</th>
</tr>
</thead>
</table>

ASSYMETRICAL SPINNAKER

MAST TO JIB TACK (J) 26' 7"
FORETRIANGLE HEIGHT (I) 70'
MAINSAIL LUFF (P) 63' 3"
MAINSAIL FOOT (E) 19'

The mainmast is by Sparcraft, and is 70' from the cabin top to the deck. It is black anodized for corrosion resistance for easy maintenance.

The mizzen mast (50') is by Forespar. Standing rigging is stainless Nitronic by Navtec.
The conversion to a ketch rig provided an amazing increase in performance. The gigantic sailplan, supplemented with a mizzen staysail and a really big assymetrical chute (mounted on a 12' long easily removable bowsprit), provide incredible speed in light air. We put a lot of sail on this boat. A large percentage of sailing time is spent in light to moderate air, and we wanted the boat to be virtually unbeatable in these conditions. When it blows, you can always shorten sail, or douse the mainsail completely and sail with just the jib and mizzen, a combination that provides perfect helm balance with a small and easily handled sailplan.

The main and mizzen booms are unique and attractive. These are called "basket booms". When the main or mizzen sails are dropped, they disappear completely into the boom. A small dacron cover is permanently attached to a boltrope extrusion on the starboard top of the boom. The covers stretch across the lowered sail and completely protects the sail from weather. To hoist the sail, 4 snaps on the port side of the boom are released, exposing the sail. The sail is then hoisted. When the sail is completely up, or reefed, the cover, still attached to the starboard side of the boom, is pushed down into the boom, where it stays while sailing.

When lowering the sail, it is dropped into the boom, guided by lazy jacks. The small cover is pulled across the sail and snapped in place. This is the best looking and easiest to use of any sail handling system we have ever seen. It also works well to control the sail when partially reefed.
The fiberglass boom is lighter than a standard aluminum boom, and is finished with high gloss Imron polyurethane paint to match the color of the mast.

This system makes single handed sailing and sail handling a snap. I frequently sail the boat by myself, and this is the biggest labor saving device that we have come up with and that...

The boom is wide, but relatively short from top to bottom, so it looks great from the side of the boat. It also has a big advantage over a conventional boom in that it provides significant tip plating, preventing air (and thus lift) from spilling out around the bottom of the sail. This system is used to great advantage aboard the J boat Endeavor. The front end of the boom is open, allowing air to flow through the boom to prevent drag.

This is the self tending system for the jib. The jib is sheeted to a self-tacking roller bearing car on a curved track just ahead of the mast. When the boat is tacked, the sail moves automatically to the opposite side of the boat without releasing and re-tightening the jib sheet. This minimizes the noisy flap-ping of the jib as the boat is tacked and saves an enormous amount of work. The skipper simply turns the wheel. Anyone who has ever tacked a large boat up a narrow channel, or in close quarters racing, knows that the effort to bring a large jib from one side to the other with...
each tack can be a killer for the crew. The self tacking system, in our opinion, is indispensable for comfortable sailing.

SAIL INVENTORY

Mainsail: 10 oz per sq ft dacron fabric, by Doyle. Full battens with roller bearing Harken cars that slide up and down a track on the aft side of the mast. 3 reef points.

Mizzen: 8 oz dacron, by Doyle. This sail is also fully battened with cars that slide up and down on the mast. 2 reef points

Working, self tending jib. 8 oz dacron by Doyle. Mounted on a heavy duty Harken roller furling system with an anodized aluminum 2 track luff extrusion.

130% genoa, laminated mylar and spectra by Ullman. Very light and very strong. Perfect for going upwind in light air

Asymmetrical spinnaker, nylon, by Ullman, mounted on a 12' removable bowsprit. This sail is used more than the conventional spinnaker. With this rig, the boat generates a lot of apparent wind, like a fast catamaran, and the boat is rarely sailing directly downwind.

Conventional symmetrical spinnaker, nylon, by Ullman. This sail is used when running dead downwind.

All of the above sails come with all related hardware, including sheets, reaching struts, poles, tracks and Harken snap shackles. All of the sails are in excellent condition.

Anthem has running backstays that are used only in really heavy air.

There are dedicated Harken 2 speed winches for all sheets, guys and halyards. All sheets can be lead to a powerful electric Harken winch on the cockpit coaming near the skipper. This is a nice feature that takes all of the hard work out of trimming and hoisting sails.
Hydraulic Navtec boom vangs are used for both main and mizzen booms.

Hydraulic Navtec cylinders are also used for tensioning the backstays.
Anthem is one of the fastest production cruising sailboat built, including even the large cruising catamarans. The relatively small, easily handled sailplan will drive the boat at speeds that no other cruising boat, and very few large racing machines, can match. In winds of 15 knots, the 65 can sail at over 11 knots, and speeds of over 25 knots can be reached in strong winds. For effortless sailing or for sailing in heavy wind, the jib and
mizzen, without the mainsail, provides a lot of power and perfect balance. This is a great combination for singlehanding.

Anthem is optimized for light and heavy downwind racing, the most common type of long distance racing along the west coast.

A boat that performs well is generally safer to sail. It will certainly yield greater long term enjoyment. There is no greater frustration than the comfortable "houseboat" that is painfully slow. You can always make a fast boat go slower by reducing sail, but you can't make a slow boat sail fast. High speed, under power or sail, makes it possible to reach cruising areas or races that otherwise could not be reached within the time limits of a weekend or a vacation. A fast cruiser such as this can often cut the time necessary for a long passage by half, and you will go in style. Also, the yacht's high speed can reduce exposure to unfavorable weather conditions, and its speed gives it a better chance of completing a passage within the limits of weather forecasts, or of effectively seeking port to avoid impending storms. It is also a lot of fun to fly past other boats like they were tied to a rock. There is no sacred principle that says a great cruising sailboat should be slow.

The low, streamlined profile gives low windage, which greatly increases the speed of the boat when sailing or powering into the wind. The typical fat, high sailboat is burdened with an enormous amount of wind drag. (The low windage also means that there is a lot less force to cause the boat to drag its anchor.)

All competitors claim their boats will provide fast passages and virtually every boat can lay claim to an unusually long day's run. The issue is how often they get these good rides. Anthem will provide better speeds and incredibly long day's runs in normal, everyday sailing conditions.

There is one great way to prove speed. Racing! JOSS, a MacGregor 65, held the course record for the prestigious Los Angeles to Puerto Vallarta class for nearly 20 years, until recently broken by the 80' super-maxi Magnitude 80. In setting this record, the yacht averaged over 10.5 knots for 1150
miles, in generally upwind conditions, and hit top speeds of over 25 knots. 5 of the first 7 boats were MacGregors. MacGregors have finished first in dozens of major races, and held the course records for the rugged San Francisco to Los Angeles race and the crew of 2 Farallon Islands race. In these races, the 65s were competing with many of the fastest yachts on the West Coast. Anthem is a lot faster then the MacGregor 65's

The yacht FIRST CLASS, a Coast Guard licensed MacGregor 65 in daily charter service in Lahaina, Hawaii, consistently sails faster than any of the high speed beach catamarans that have heretofore dominated the charter business in the islands. The owner considers it to be the fastest yacht in the islands.

For an independent assessment of performance, look at the rating given to the 65s and ANTHEM by the Performance Handicap Racing Fleet (PHRF). PHRF is a racing handicap system that is based on performance, not the design of the boat. Race results have been tabulated over years of racing, and handicaps are adjusted to keep different kinds of sailboats competitive. The result is a system that tells the relative speed based on real racing history. There are about 50,000 boats racing under the PHRF throughout the United States. The PHRF handicapping system has given the M65 and Anthem ratings ranging from +12 to minus 42, (yes, minus 42) among the lowest (and fastest) ever issued. The handicap number is expressed in seconds per mile. In other words, at minus 42, history shows ANTHEM to sail one mile 108 seconds faster than the Swan 57 at +63. Here are some other ratings for comparison: The lower the number, the faster the boat.

Anthem -42
Swan 57 +63
Tayana 52 +138
C & C 62 +24
12 meter +24
Valiant 40 +138
We have chosen to ignore measurement handicap rules. We see no reason to slow up the boat to improve its handicap. Being first to get there is a lot more fun, and it seems to be what gets the most publicity. Moreover, you can count on the fact that handicap rules will always be changing, and that any boat designed to a rule will be obsolete, and of limited value, in a very short time.

SINGLE HANDED SAILING: This is one of the easiest boats to sail single handed. The self tending jib eliminates sheet tending with each tack. All the cockpit winches and controls are near the helmsman. It is still necessary to go to the mast for reefing, but all other lines are led aft. (We do not lead reefing lines and the mainsail halyard to the cockpit because the extra blocks add friction to the system and create a lot of extra load).

Single handed sailing requires a good auto pilot, so that the boat will sail itself while sails are raised, sheets are tended, and navigation and housekeeping chores are performed. With a couple, sailing the boat is a snap. Single handed sailing requires a bit of care on how much sail you carry and how much open space you have for raising and handling sails. These boats have been sailed thousands of miles with only one person aboard.

ADVANTAGES OF A LONG, NARROW HULL: Speed, of course, is the big one. A long slender hull offers a long waterline, and waterline length is the major factor in determining how fast a boat will be. You can see it in the lack of wake when the boat is going near or beyond hull speed. Since a slender hull pushes less water aside in the form of waves, it is not as limited by a defined hull speed. The theoretical hull speed on this yacht is
10.7 knots, but it will easily slide thru this barrier and go much faster.

If you wish to see the speed advantage of a narrow hull, compare a long slender rowing shell with that of a plump dinghy of equal weight. Given the same amount of effort, the difference in speed is astounding.

The easily driven, narrow hull requires a very small sailplan to go very fast. This makes the boat easier to sail. The boat has a lot of sail for its weight and size, and sails best when deeply reefed in heavy winds.

There is also a major safety advantage. Under really extreme circumstances, if a wide yacht gets upside down it may stay there for quite a while, until it gets set upright by a wave, or floods and sinks. Over the past few years, the rating authorities have been doing a lot of soul searching about the wide boats that the handicapping rules have tended to create. Many can no longer be considered self righting. A narrow yacht with deep ballast, like ANTHEM, will recover from a severe roll a lot more rapidly. It is our opinion that, regardless of the dictates of the handicapping system, an oceangoing yacht should be self righting. The angle from which the 65's and Anthem will right itself exceeds that of most other production sailboats.

A long, slender yacht such as this is easy to keep on course, unlike many of the IOR based racing and cruising boats that are difficult to steer, particularly downwind in large seas. The balanced rudder is a long way aft, and exerts enormous steering power with minimum loads for the helmsman. The yacht can be turned in virtually its own length.

Length provides an extremely stable, comfortable motion at sea, with far less pitching (or hobby horsing) than the typical cruising yacht. The hull knifes through waves with little slamming. When sailing hard into the wind, most of the spray is generated at the bow. With the rear cockpit location, it is rare to have spray get as far aft as the cockpit. Broad beamed boats shoulder a lot of water aside, and it ends up being blown over the boat. The foredeck is no place to be in heavy weather on any boat, but the aft end is nicely isolated.

A wide cabin is no doubt attractive at a boat show or at a dock, but when sailing at any angle of heel, it becomes a real challenge. Picture a boat with a 20 foot beam, and thus a 20' wide main salon. When this is heeled 10 to 20 degrees, it is a long, uphill climb when going to the windward side, or worse, a long downhill roll to the leeward side. In the center, there is little
to provide support. A narrower cabin gives a lot more safety and security at sea. Another advantage of ANTHEM'S hull shape is that the usable width extends for much of the boat's long length. On a plump, shorter boat, the wide beam may only extend for a few feet before it tapers off to bow and stern.

Privacy is also a factor. The staterooms are a long way apart, separated by the lounging and working areas of the boat, and the occupants can be assured of far more privacy than in a shorter boat. The rear sleeping area is really remote, and ideal for the charter crew or noisy kids. This area is separated from the main living area by a soundproofed watertight bulkhead.
The recently installed, low time Yanmar 265 h.p. turbo-diesel will drive the boat at 13 mph, really fast for a sailboat.

Even at high speeds, the engine burns very little fuel. Most powerboats burn up so much fuel that they are totally impractical to operate for long distances. For fuel economy, builders are turning to the long, narrow powerboats of days past. Unfortunately, narrow, shallow draft boats roll so badly that they are almost uninhabitable. ANTHEM's keel limits this
unmerciful rolling. It well may be one of the most efficient and comfortable oceangoing powerboats available. The combination of mainsail and engine will yield phenomenal speed, with virtually no rolling. Going to weather under power in heavy seas, the ANTHEM will outrun many of the best oceangoing powerboats, because the powerboats have to throttle back to avoid slamming themselves to pieces.

Unlike a power boat, if the engine quits, you can still get home.

ANTHEM has a 22’ feathering Maxi prop, one of the best performing props on the market. Unlike folding props, which provide equally low drag, the feathering prop provides full power in reverse.

The propeller is near the rudder, and the prop wash across the rudder provides excellent control at low speed.

Anthem also has outstanding control when backing, which is rare for most sailboats.
This is the mold from which the 65 hull is produced. It will be polished and waxed. The white exterior hull finish will be sprayed on the mold, followed by many layers of hand laid fiberglass mat and woven roving. Each layer is impregnated with resin and cured.

These are the continuous longitudinal stringers that provide support for the hull shell. The continuity of the stringers eliminates "hard spots" which create high concentrations of stress. The raised area across the centerline is a 3" thick solid fiberglass layup that carries the loads imposed by the keel.

This picture shows the transverse bulkheads that support the hull stringers and hull shell. These bulkheads are bonded on both sides to the shell and stringers with 1/4" thick fiberglass layups. Few boats have this many full bulkheads, and they give the hull tremendous stiffness and strength.

These are the individual fiberglass liners that fit between the bulkheads. These form the floors, berths, seats and interior cabinetry. Each liner is produced on its own mold. These liners bond to the hull and bolt to the bulkheads and add a great deal to the structural integrity of the boat.

This is the upside down deck, without the cosmetic liners that form the ceiling. You can see the stringers that give the deck its stiffness, and the partial bulkheads that bolt securely to the tops of the hull bulkheads. We use heavy, solid laminates
rather than low density cored construction for strength and stiffness.

On the North American continent, we can ship to you by truck. Here you see a 65 being loaded on a container ship. This boat is headed for Spain. Most 65s are launched at Newport Beach, California, near our plant, and sailed to their home ports throughout the world.

CONSTRUCTION: The 65 is an American built boat that offers craftsmanship unexcelled anywhere. It is built to outlast all of us. It offers the highest quality fiberglass construction. Each boat is built of individual layers of fiberglass fabrics, laid in place by hand, in a carefully controlled process. Hulls and decks are extremely strong, with extra reinforcement at all high stress points, such as the areas around chainplates, rudder fittings, the mast base, and under all other load carrying hardware.

The 65 has a one piece hull. Many cruising boats are built in separate mold halves and joined at the centerline. There is no continuous fiberglass through their centerline joints. This is risky practice and these boats should be avoided.

Many other builders use "chopper guns" to build their boats. These are devices for spraying a mixture of resin and very short strands of fiberglass. We don't use them, even though they re-duce cost. They do not, in our opinion, give adequate impact strength or controllable hull and deck thickness. It is too easy for the operator, no matter how good, to miss a spot, and it is almost impossible to inspect a chopper gun layup after it is built. With a hand laid hull, it is very easy to count layers of woven fabric. Since each layer offers consistent thickness, you are sure of having the proper fiberglass content. The hand layup system provides a higher ratio of fiberglass to resin, resulting in a stronger, lighter boat. Chopper gun laminates are brittle and more prone to failure. We use only hand layup, with a high per-cent-age of woven fiberglass reinforcement, because that is the system that builds the best boats.

Many builders continue to mix resin and catalyst (the catalyst causes the resin to become hard) in gallon buckets and apply the resin with a brush. Using that method, it is virtually impossible to determine if the catalyst ratio is right and the resin stirred properly. It is also hard to control the amount of resin applied to the fiberglass. (The fabrics seem to soak up any amount of resin and the result can be a seriously overweight boat.) We use automated spray equipment that injects
the catalyst in exact amounts at the head of the gun, mixes it completely, and applies it uniformly to the fiberglass. These systems are expensive, but reliable. Improper catalyzation is, in our opinion, the leading cause of blistering that can occur later in the life of the boat. We have been remarkably free of this problem, and believe that our automated mixing guns are the reason. Practical Sailor did an extensive study of blisters, and found that MacGregor was one of two builders experiencing the lowest incidence of blistering.

We have stayed away from sandwich construction in the 65 hull. We use only solid fiberglass laminates. Foam cores, often used by competing builders, offer less than 200 pounds of adhesion per square inch. That is not much better than rubber cement. The resin bonds that hold our hull laminates together will take over 2500 lbs per square inch to pull apart. Polyester resin, which is one of the basic materials used in virtually all modern boats, is not totally impervious to water absorption. For this reason, we do not use balsa core in the hull. If exposed to water for long periods, the balsa can rot and literally turn to mush, causing major structural problems. Balsa is fine, in our opinion, for decks and structures that are not constantly immersed in water (as long as there is no balsa near holes for mounting hardware), but we, and many other quality builders, shy away from balsa below waterline.

All fittings are thru bolted, with heavily reinforced pads to carry the loads. Side shroud, backstay and forestay chainplates are bolted directly to the heavily reinforced hull, not bolted to bulk-heads that are bonded to the hull. The hull at the chainplates is 1 1/4" thick. Recognizing that leaks resulting from badly sealed hardware attachments can drive the owner crazy, and that a completely dry boat with a dusty bilge is one of sailing's great joys, we spend a lot of time and effort to seal and test all attachments.

The hull and deck are joined with 3/8" stainless steel bolts on 4" centers. The joining flange is external so the bolt holes do not penetrate the interior of the boat, eliminating a potential source of leaks. The hull-deck joint is one of the strongest and most leak proof available on any yacht. We have yet to have a leak with this system.

The mast steps on a transverse solid fiberglass hull beam, 20" wide and 3" thick, including the hull. This beam also supports the forward end of the keel. It extends sideways to pick up the chainplate loads. There are 6 similar beams, 3" thick by 6" wide, thru which the keel bolts pass.
KEEL: The keel is a 12,000 lb. conventional NASA 9% airfoil shaped lead fin with wings, bolted to the hull with 13 1" stain-less bolts. The bolts pass through 3" thick solid fiberglass. The draft is a very shallow 6', which will allow you into most great cruising areas. 6' of draft is about it for many good cruising areas, particularly in the tropics. The quietest and calmest anchorages are usually nearest the shore. You will spend a lot of time at anchor, where comfort is a big thing.

We have built several of the 65s with 8'6" draft conventional IOR type keels, but we find a negligible performance difference between the 6' draft winged keel and the deep keel. The winged keels really do work, as the America's Cup participants have found. The center of gravity on the deep and shallow draft keels is identical. There is no reason to lock yourself out of the best cruising waters for a marginal improvement in windward performance.

A shallower keel exerts less force on the hull if you really plow into something solid on the bottom, so the chance for damage is less. (It is comforting to know that we have had a number of the 65s run aground at over ten knots with no hull damage.)

MAINTENANCE: The boat is designed for easy world wide servicing. The engine and related components are standard items available throughout the world. The solid, all fiberglass construction, with no sandwich core material, makes damage less likely and far easier to deal with if it should occur. Everything is easy to fix.

To allow the owner or charterer more sailing and less work, we have tried to keep the boat extremely simple and as maintenance free as possible. There is no wood to refinish, no complex systems to keep tuned, and a minimum of potential opportunities for electrolysis or corrosion. An occasional polishing and waxing, care of the sails and the engine, periodic inspections, zinc changes, and the usual haulouts and bottom jobs, should be all that will be required.
The mechanical and electronic systems are spread throughout the boat and are easily accessible. With most other boats, everything is in the engine room, and it is usually necessary to sprawl across a hot engine to work on such things as bilge pumps, water heaters, steering, etc. In the 65, only the engine and its related equipment are located inside the engine covers.

MacGregor 65 Corporation

1631 Placentia, Costa Mesa, California, 92627, USA

(714) 642 6830 FAX (714) 642 5379 or (714) 642 5558

A 45 minute video is available for $10, showing all aspects of the MacGregor 65’s design, construction and performance.
This photo shows a 65 (with stability similar to Anthem's,) undergoing Coast Guard stability testing, using a small army (50 people) as moveable ballast. Notice that the waterline stripe is still visible even with this excessive load.

There are three watertight bulkheads. The forward bulkhead is at the rear end of the anchor locker. The aft bulkhead is under the steering pedestal. There is another between the engine room and the master stateroom. Other safety features include non-skid deck surfaces, strong lifelines, bow and stern pulpits, self bailing cockpit, and secure hatches and ports. The non-skid deck surface has enough tooth to insure good footing, yet it is not so rough as to tear up your skin.
There is a large electric bilge pump, and a second system for draining bilges and shower pans. There is a general purpose pickup hose that can suck water out of any spot in the central area of the boat. This is a very large, manually operated high capacity bilge pump in the main salon, and another in the engine room.

Anthem is equipped with 3' tall lifelines (3 rails) and pulpits. This height is required for Coast Guard certification.

Running lights are the same size and power as required for full sized ships. Anthem is readily visible at night from long distances.

Anthem has a 6 man zodiac self inflating survival raft, with canopy. It is fully equipped with lifejackets, flares and strobes.

There is a dedicated EPIRB (emergency position indicating radio beacon) aboard the boat. The system provides a signal indicating the boat's name as well as its position.

All deck surfaces have effecting non skid.
ANCHORING

MACGREGOR 70 SITE MAP

INTERIOR

MACGREGOR 70 HOME PAGE

EXTERIOR

DRAWINGS AND SPECIFICATIONS

RIG

SAILING PERFORMANCE

POWERING PERFORMANCE

CONSTRUCTION

SAFETY

ANCHORING

ELECTRONICS

PRICE

SHIPPING

ANCHORING:

Anthem has two complete sets of anchors, chain and line. There large fortress anchors, with 70' of chain and 350' of 5/8 nylon line.

Anthem has a large, self bailing anchor locker ahead of the watertight bulkhead. The Muir electric anchor windlass is strong and secure.
We prefer the Fortress because of its light weight and its exceptional holding power.

The anchor roller grips the anchor in a horizontal position and keeps it away from the hull and deck. The boat rides very well at anchor, with virtually no casting about.

The anchor can be raised and lowered with foot operated switches on the foredeck, and an up and down switch on the cockpit pedestal.
Anthem is equipped with the following:

1. VHF radio for short range communication. There is a VHF on the pedestal in the cockpit and at the inside navigation station.

2. Furuno radar and charting and GPS. There is a large display on both pedestal and inside navigation station.

3. Brooks and Gatehouse full instrumentation package with autopilot. Controls nd displays on both the pedestal and inside navigation station.

5. Stereo, with inside and outside stereo speakers, with radio and DVD player.

6. Flat screen TV and DVD player, 12 volt, in the main salon.

7. Emergency position indicating beacon.
WHY THE LOW PRICE: As you have probably noticed, the price for this yacht is considerably less than the price of boats of comparable size. The reasons are many.

MacGregor is one of the few production oriented builders of large sailing yachts in the world. We have one of the largest, most modern and efficient...
plants in the industry. We buy in volume, obtaining the best materials at the lowest possible prices. Overhead and development costs can be spread over a large number of boats.

Unlike most sailboat builders, we make large investments in manufacturing engineering -- the art of creating production systems that are labor saving and foolproof. We build jigs, fixtures and tooling that allow the worker to do his job with a minimum of difficulty and a maximum of accuracy. To give you an idea of the benefits, one man can remove the hull from the hull mold in 10 minutes. The deck can be removed from its mold and rolled over onto its assembly rack in less than 10 minutes. Without highly specialized equipment, many builders take hours, or even days, to perform these tasks.

Because of the precise tooling used to build every part of the 65, we build only the configuration shown in our specifications. We do no custom modifications. We do, however, offer a variety of optional additions to the boat.

Many designers spend very little time in production plants, and tend to create boats that are extremely costly and unnecessarily difficult to build. We are highly skilled at building sailboats, and equally skilled at designing boats that are easy to manufacture. With care, this can be done without sacrificing quality, performance or safety.

Woodwork is expensive as well as hard to maintain. A major part of the cost and weight of many cruising boats is the elaborate joinery and finishing. Most modern powerboats have wood-free interiors similar to the 65. Wood is nice, but a beautiful, maintenance free and far less expensive interior can be created without it.

Competitors, who we are outselling wildly, would like you to believe that
their boats are better because they cost more. They are wrong. The old adage "you get what you pay for" is often the inefficient builder's rationalization for his higher prices. Be sure that "what you pay for" is not a builder's high overhead, ex-cessive advertising expenditures, unnecessarily complex de-signs, poor inventory control, lack of well engineered produc-tion tooling, or a wide range of other wasteful business or manu-facturing practices. These are of no value to you, but their costs are invariably passed on to you in the form of higher prices.

WHY NOT BUY OR BUILD A CUSTOM BOAT? Getting a production boat has major advantages. Lowest cost is the obvious one. Of greater significance is the amount of testing and reliability involved. The more boats of a given type that are sailing, the more likely that difficulties will be discovered and corrected. A "one-off" yacht generally receives little testing compared to a series of production boats. With a custom yacht, you are buying an experiment. A good track record is the best assurance of sound construction. Insurance companies are likely to consider a production boat, from an experienced builder, more favorably. Resale values will be better. Our 65s have held their values ex-tremely well. Because of their high quality and durability, a few of them have changed hands for more than the first owner origi-nally paid for the new boat.
ALL DIMENSIONS ARE TO THE THEORETICAL INTERSECTION OF THE PROJECTED EDGES OF THE SAIL

DIMENSION ARE TAKEN WITH THE MATERIAL STRETCHED WRINKLE FREE

3.8 OZ. WHITE DACRON

HANKS MUST FIT 1/8" HEADSTAY

ALL GROMMETS 5/8" MINIMUM INSIDE DIAMETER

NO NUMBERS

NO BATTENS

NO JIB HANKS WITHIN 24" OF TACK

MARK BAG "GENOA WITH HANKS M26"

AREA 171 SQ FT

PER BOAT 1 EA

DRAWING DATE: NOV 3 2005

MACGREGOR PART NUMBER: 408
ALL DIMENSIONS ARE TO THE THEORETICAL INTERSECTION OF THE PROJECTED EDGES OF THE SAIL

DIMENSION ARE TAKEN WITH THE MATERIAL STRETCHED WRINKLE FREE

3.8 OZ. WHITE DACRON

ALL GROMMETS 5/8" MINIMUM INSIDE DIAMETER

NO NUMBERS

NO BATTENS

MARK BAG "GENOA WITH LUFF TAPE M26"

AREA 171 SQ FT

25' 4"

14"

22' 8"

14'-8"

6"

16' 9"

GENOA WITH LUFF TAPE

PER BOAT 1 EA

DRAWING DATE: NOV 3 2005

MACGREGOR PART NUMBER: 412
ALL DIMENSIONS ARE TO THE THEORETICAL INTERSECTION OF THE PROJECTED EDGES OF THE SAIL

DIMENSIONS ARE WITH THE MATERIAL STRETCHED WRINKLE FREE

3.8 OZ. WHITE DACRON

HANKS MUST FIT 1/8" HEADSTAY

ALL GROMMETS 5/8" MINIMUM INSIDE DIAMETER

NO NUMBERS

NO BATTENS

NO JIB HANKS WITHIN 24" OF TACK

MARK BAG: "JIB WITH HANKS, 26M"

AREA: 125 SQ. FT.

25' - 4"

21' - 6"

9'-7"

5" ROACH

11' - 5"

FOOT

JIB WITH HANKS FOR 26M AND 26X

MACGREGOR 26M: PER BOAT 1 EA

DRAWING DATE: NOV 12 2005

MACGREGOR PART NUMBER: 418
ALL DIMENSIONS ARE TO THE
THEORETICAL INTERSECTION
OF
THE PROJECTED EDGES OF THE
SAIL

DIMENSIONS ARE WITH THE
MATERIAL STRETCHED WRINKLE
FREE

3.8 OZ. WHITE DACRON

ALL GROMMETS 5/8"
MINIMUM INSIDE
DIAMETER

NO NUMBERS

NO BATTENS

25' - 4"

21' - 6"

9'-7"

5" ROACH

11' - 5"

FOOT

AREA: 125 SQ. FT.

BAG MARKED "JIB WITH LUFF TAPE, 26M"

SAME SAIL AS PART NUMBER 418 (JIB WITH HANKS)
EXCEPT THIS SAIL HAS LUFF TAPE INSTEAD OF HANKS
SAIL SLOT IN MAST AND BOOM HAS .200" OPENING

3/8" BOLT ROPE ON LUFF AND FOOT

3.8 OZ DACRON WHITE

NO RACING NUMBERS

ALL MEASUREMENTS, UNLESS OTHERWISE NOTED, ARE TO THE THEORETICAL INTERSECTIONS OF THE PROJECTED EDGES OF THE SAIL (EXCEPT FOR HEADBOARD).

AREA, INCLUDING ROACH, BUT NOT INCLUDING BOLT ROPES = 170 SQUARE FEET.

BATTENS SPAECED EQUIDISTANT ALONG LEECH

AFT EDGE OF MAST

MEASURE TO CENTER OF 1/4" TACK PIN

1" I.D. RING TOP EDGE OF BOOM

MARK BAG "MAINSAIL, 26M"

ALL DIMENSIONS ARE WITH THE MATERIAL STRETCHED TIGHT AND WRINKLE FREE.

MAINSAIL 26M
MACGREGOR 26M: PER BOAT 1 EA
DRAWING DATE: NOV 1 2005
MACGREGOR PART NUMBER: 404